KEYWORDS
TOPICS
ABSTRACT
Static liquefaction is a form of unstable behaviour of granular soil. It is most common in saturated loose sands under monotonically loaded undrained conditions. Predicting static liquefaction using an elastic-plastic model that incorporates the non-associated plastic flow rule and strain hardening is possible. The article briefly describes the unstable behaviour of saturated sand in undrained conditions under a monotonic load. A simple elastic-plastic model with deviatoric hardening and a Drucker-Prager load surface is presented. The constitutive relationships were programmed in a Python script. Simulations of triaxial tests under mixed stress-strain control demonstrated the model's ability to predict various undrained sand responses, including fully stable responses (no liquefaction) and partial and complete liquefaction under triaxial compression and tension. Predicting static liquefaction is possible by properly selecting the proportions of the parameters involved in plastic potential and loading functions, η_c and η_f, and the parameter A used in the deviatoric hardening rule of hyperbolic type.
eISSN:2300-3103
ISSN:1230-2945
Journals System - logo
Scroll to top