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EVALUATION OF LOAD VALUES USING THE GUMBEL MODEL

S. WOLIŃSKI1, T. PYTLOWANY2

The paper deals with application of the Gumbel model to evaluation of the environmental loads.
According to recommendations of Eurocodes, the conventional method of determining return pe-
riod and characteristic values of loads utilizes the theory of extremes and implicitly assumes that
the cumulative distribution function of the annual or other basic period extremes is the Gumbel
distribution. However, the extreme value theory shows that the distribution of extremes asymp-
totically approaches the Gumbel distribution when the number of independent observations in
each observation period from which the maximum is abstracted increases to infinity. Results of
calculations based on simulation show that in practice the rate of convergence is very slow and
significantly depends on the type of parent results distribution, values of coefficient of variation,
and number of observation periods. In this connection, a straightforward purely empirical method
based on fitting a curve to the observed extremes is suggested.
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1. I

The construction of a building must be designed in such a way as to meet the requ-
irements of reliability and, while minimizing the costs, as to be able to take over, in a
designed period of use, all the effects and loads that may occur during its realization
and use [1,2]. The aforementioned requirement for reliability and costs reduction of
realization of the project is closely related to several factors, among others: assessment
of the size and likelihood of loads, as well as evaluation of the anticipated physical,
social and environmental costs of damaging or excluding the building from use. As for
the environmental loads, they may result from the phenomena or events of a natural
character. Climatic loads being a result of natural phenomena deserve attention in parti-
cular. These phenomena include geophysical phenomena and processes that take place
in the earth’s crust, in atmosphere, and in hydrosphere. The most typical values of these
loads are generally the main representative values caused by these events. In the past
they were determined on the basis of observation, simple measurements and historical
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data. Modern form of their description are usually probabilistic models that take the
form of random variables whose parameters and probability distributions are identified
on the basis of statistical analysis of results of systematic measurements. These models
are descriptive, i.e. they do not relate to the nature of the events that determine their
occurrence and parameters. Currently, the most commonly used models are those based
on random discrete trials, multiplicative interaction models, and extreme values. Key
parameters determining representative value of environmental loads are return period
T (in which the main representative load maybe exceeded on average once) and annual
(or this related to other unit period) probability p of exceeding this value.

The main scientific objects of the article are: a presentation of a review of models of
probabilistic live interactions, primarily climatic ones, an analysis of assumptions using
the Gumbel model for the greatest value, as well as the results of calculations based
on simulation related to the ground snow load and the assessment of the possibilities
and consequences of use.

2. P    

In semi-probabilistic and probabilistic methods of construction design, basic variables
are random values. With regard to the live loads, it is accepted that they are continuous
random variables with normal distribution N , log-normal distribution LN or the Gum-
bel distribution G. Their basic representative values Frep are the main representative
values of Fk , commonly called the quantiles of order p of corresponding random
variables F, at a fixed return period T [1,3]. In this paper, the return period T equals
the number of years that elapse on average between successive exceeds of values St
by random process S(t). In the case of the main representative value of snow loadSk ,
different intensities of snowfall during successive winter periods must be taken into
account. If Sk is determined on the basis of specified return period T , the maximum
annual load may exceed the value of Sk on average on every T of measurement period
(years).

It is commonly accepted [4, 5] that the probability of exceeding the value corre-
sponding to T -year return period is p = 1/T . At the same time, it is worth noting that
the probability of exceeding of defined in such a way main representative value is p
and the probability P of exceeding the main representative values x-times in reference
period T can be calculated by Bernoulli’s equation.

(1) P(T, x, p) =


T
x

 px(1 − p)T−x

The following table shows the independent Bernoulli trial referred to the assumed
parameters p,T.

An important class of probabilistic models are those that describe the properties
of the considered phenomenon generated by a group of causes difficult to isolate
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Table 1
Sequence of independent Bernoulli trials.

T, p
Probability P that variable

F in the period T does
not exceed the value of Fk

Probability P of exceeding
the value Fk in period T

one time
T=20 years, p=0,05 0,358 0,642

T=50 years, p=0,02 0.364 0,636

T=100 years, p=0,01 0,366 0,634

where: Fk- the main representative value of the load

which determine the resultant of uncertainty of the phenomenon. The model, being the
resultant variable distribution, can often be determined without knowing the distribution
of causes, only from the way they affect the resultant variable. Three basic cases are
mostly considered, when the causes are: additive, multiplicative, and when extreme
values of causes are important [4,5].

a) Models of summation, based on the central limit theorem, which, in a popular
simplification, states that with the increasing number of random variables being the
components of the sum, the distribution of their sum approximates to normal distribu-
tion. In case of meteorological loads, the sum models are not justified.

b) Multiplicative models are based on the assertion that with the increasing number
of random variables being the factors of the product, the distribution of their product
approaches to the log-normal distribution. Multiplicative mechanism is applicable to
many phenomena and processes, including aggregate crushing, accumulation of fatigue
damages, flows in rivers, precipitation and meteorological loads, including ground snow
load [6,7].

c) Models of extremes are used when the survival or destruction of a building
depends on its ability to meet the minimum or maximum requirements. Application of
extreme value distributions is justified in case of live loads, including meteorological
and seismic loads, intensity of flows of liquids and gases, other loads and the strength of
building materials. The main finding of this theory is that, regardless the type of parent
distribution of random variables, uncorrelated extreme values have distributions that are
asymptotically convergent to extreme value distributions of three types: type I infinite
and exponentially right-or left-falling, type II restricted from below by zero and expo-
nentially falling right, type III unilaterally limited by zero and exponentially falling [4].

3. T G     

Since the sixties of the twentieth century, the distributions of maximum values have
been commonly used to estimate the parameters of distributions of meteorological loads
on building structures. The distribution of the first type, which is the Gumbel double
exponential distribution, is most commonly used. Cumulative distribution function of
the distribution of variable Y , the greatest one of many independent random variables
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with the exponential character for sufficiently great values of the argument has the
following form:

(2) FY (y) = exp{− exp[−α(y − u)]},−∞ ≤ y ≤ +∞
where: u, α– distribution parameters: modal value and the measurement of dispersion.

Between the parameters of Gumbel distribution and moments of this distribution,
the following interactions occur:

(3) mY ≈ u +
0, 577
α

, σY ≈ 1, 282
α

, γY = 1, 1396

where: mY , σY , γY – expected value, standard deviation and skewness.
Projected main representative value of the load as a function of the return period

T can be estimated using the dependence:

(4) Fk ≡ Yk = − ln{− ln[FY (y)]} = α(Fk − u)

Values of random variable cumulative distribution function FY (y) for the total number
n of seasonal maxima (e.g. in case of annual snow load) is calculated based on order
statistics of the range, arranged in ascending order:

(5) FY (yi) =
i

n + 1

For the parameters αandu calculated according to (5) for the assumed reference period
T , the main representative value of an action Fk can be determined:

(6) F[Fk = Yk(T )] = 1 − 1
T

In the extreme value theory it is not valid to assume that the observed maximum values
should fit well into the Gumbel distribution, because it is shown that the distribution of
maxima tends asymptotically to the theoretical Gumbel distribution with the increase
in the number of sample n, i.e., the number of observation periods, from which the
greatest values have been selected. As it can be noticed, the distribution parameters
α and u depend on n. In practice, it is assumed that n is great enough to use empi-
rical cumulative distribution function in the proper model of random variable Y . For
instance, according to the recommendations of PN-EN 1991-1-3 [8], the ground snow
load analysis should include at least 20 measurements of maximum annual values.
Functional interaction between the modal value un from the n−element sample can be
approximated, for example, using such dependency [5]:

(7) un =
1
λ

ln n, lub un =
1
λ

√
ln n

where: λ parameter determined on the basis of the results of the measurements.



E        203

The second fundamental limitation on the applicability of extreme value distribu-
tions, usually neglected in engineering analysis, results from the assumption that the
extreme value theory is important when the periodic (e.g. annual) extreme values have
been selected from the infinite number of independent observations [4]. This assump-
tion is not satisfied even approximately when considering the problem of prediction of
some meteorological impacts, such as snow load. Influence of the number of m sets of
observations and their distributions on the main representative value of an action can
be analyzed by simulation methods.

4. A           

   

4.1. P   

To assess the impact of the number of independent unit periods n, from which periodic
maxima yi,max, of numbers of measurement results in unit periods m, and type of parent
distribution for the anticipated maximum value ymax of the random variable Y in the
reference period T , have been selected. The author developed an algorithm and an
original program for the simulation based calculations. The procedure for simulation
based calculations of extreme values of random variables can be presented as follows:
a) Generate m pseudo-random numbers of the assumed probability distribution (e.g.,

N− normal, LN – log-normal and G− Gumbel) for specific moments of the distri-
bution of random variable Y ;

b) Choose the greatest and the least of m pseudo-random max ymax =max(y1, y2, .., ym)
and ymin =min(y1, y2, .., ym);

c) Repeat the drawing n times as well as the choice of the the greatest and the least
value according to points (a) and (b) and write down two sequences of numbers
y j,max and y j,min, j =1,2,...,n;

d) Develop a frequency histogram of empirical distribution and calculate the distri-
bution moments of maximum and minimum values;

e) Calculate the parameters of the assumed extreme probability distribution with the
method of least squares, of moments or of maximum likelihood;

f) For the selected reference period T or for the probability of exceeding the main re-
presentative value (quantile) of the random variable Y during the unit (e.g. annual),
calculate the main representative value Yk .

A pseudo-random number generator from the Matlab package version 6.5 was used
for the calculations [9]. The original program was written to draw pseudo-random
numbers at a certain distribution, in this case: N, LN, and G.
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4.2. R      

Algorithm of simulation based calculations presented in point 4.1 was used to estimate
the impact of the type of distribution, a number of results m in a period from which
there were selected: the greatest value y j,max and numbers j =1,2,...,n of observation
periods on the greatest value ymax of variable Y. The distributions of the random variable
Y of the type N, LN, and G with the same parameters: the expected value of 1.0 and a
coefficient of variation: 0.1, 0.2, 0.5 and 0.7 were taken for the calculation. The values
of these parameters were calculated by the method of moments on the corresponding
values of distribution parameters LN and G [10]. For a number of results within a
period and the number of unit periods for which the calculations were made, it was
adopted:m = 10, 20, 50, 100, 1000, 10000 and n = 10, 100, 1000, 10000. On the Fig. 1,
2 and 3 there are the results of the simulation based calculations as a dependency graph
ymax(m) for selected types of distribution of random variable and value n.

Fig. 1. Dependency graphs ymax(m) for n = 10[−♦−], 102 [−¤−], 103[− M −] and 104[∗], distribution N
on expected value ŷ = 1,0 and coefficient of variation: (a) v=0,10; (b) v=0,20; (c) v=0,50; (d) v=0,70

Based on the analysis of the results of simulation based calculations, it was found
that all the factors included in the calculations had a significant impact on the value
ymax. The following are the major conclusions and observations drawn from the results
of calculations:
– Regardless of the type of parent distribution, numbers m of the results in the unit

observation periods and maximum values n (i.e. number of unit periods included),
a decisive influence on the maximum values ymax, and on the tendency of their
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Fig. 2. Dependency graphs ymax(m) for n = 10[−♦−], 102 [−¤−], 103[− M −] and 104[∗], of distribution
LN value of median and logarithmic coefficient of variation: (a) y̆ =0,995; v =0,0997, (b)y̆ =0,981;

v =0,198; (c)y̆ =0,894; v =0,472; (d) y̆ =0,819; v =0,631

Fig. 3. Dependency graphs ymax(m) for n = 10[−♦−], 102 [−¤−], 103[− M −] and 104[∗], of distribution
G of modal value and scatter coefficient: (a) u =0,955; α =0,078, (b) u =0,91; α =0,156; (c) u=0,775;

α = 0,39; (d) u=0,332; α =0,546
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changes, is a dispersion of results in unit periods, and the coefficient of variation
v is its measure.

– Values ymax for determined m, n and v depend on the type of parent distribution.
For normal distribution N of coefficient of variation ν ≤0,20 there is a weak
dependence, and for ν ≥0,50 the dependence is increasingly strong. A similar, but
clearer and stronger dependence occurs in case of the log-normal LN distribution.
Definitely the strongest dependence occurs in case of Gumbel distribution G.

– Regardless of the type of parent distribution, the influence on numbers of measu-
rements within unit period m on the values of ymax is very clear, in particular for
the values of ν>0.20 and small values m. The relative stabilization of the tendency
of values ymax to grow occurs for m>50÷200.

– There was a significant effect on numbers of unit periods n included in the calcula-
tion of the value ymax. Depending on the value of dispersion measurement and on
the type of distribution, the growth rate of values ymax decreases significantly for
n>100, but a clear stabilization of Yma is observed for values of n =103÷104 and
m>50÷100. For the distributions of a type LN and G with coefficients of variation
ν ≥0,50 there are obvious disorders of changes of ymax with the increase of value n.

5. E

An illustration of the impact of the number m of independent measurement results
during the unit period, and the type of parent distribution on the evaluation of the
main representative values, is shown on the example of a snow load. Based on the
results of measurements of ground snow load from the years 1950-2000 [11] for two
points: in Krakow Balice (zone II) and Wroclaw (zone I), the expected values and load
standard deviations were estimated with the method of moments. For the assumed
parent distributions N, LN and G, according to the procedure presented in point 4,
the sets of quasirandom numbers n = T = 50 of assumed distributions, and number
m =10, 102,..., 5x106 were generated. Then, the maximum values were selected and on
the basis of their distribution the main representative values Sk for the period T =50
years were calculated.

Figure 4 presents dependency graphs of the main representative values Sk of gro-
und snow load, calculated as quantiles of order p =1/T=0,02 of the number m of
measurement results, for selected measurement points and the assumed types of parent
distributions

6. C

The standard method of calculating the main representative values of the impacts based
on the Gumbel model can lead to the results containing significant errors difficult to
estimate. It results from the acceptance of a strong and hard to verify assumption
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Fig. 4. Dependency graphs of Sk on the number of measurements and type of parent distribution.

concerning the asymptotic nature of similarity of maximum values distribution to the
Gumbel distribution, and sufficiently large, in theory converging to infinity, number of
sets of results from which the greatest values have been selected.

The results of simulation based calculations presented in this article show a very
strong dependence of assessments obtained with the assumption of Gumbel model
on several factors: dispersion of measurement results in time intervals from which
maximum values were selected; the number of measurement results in these periods;
the type of parent distribution of the results; the number of set of maximum values.
Therefore, purely empirical approach based on analysis of second-order regression
seems to be a better solution.
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