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Abstract: The classical theory of beams admits two types of connections between structural elements:
perfectly rigid and perfectly flexible. However, the engineering reality calls for a more general approach to
joint modelling. A non-ideal connection type is called semi-rigid. Its moment-rotation characteristic links
the bending moment developed at the joint with the non-zero rotation increment between both sides of the
connection. In the paper, the moment-rotation characteristic is assumed to be linearly elastic-perfectly plastic,
and not sensitive to the sign of the rotation increment. Posed in the framework of Euler-Bernoulli’s theory of
beams, the main objective of the paper is to formulate slope-deflection equations for a beam with semi-rigid
joints. Two themes are considered. The first regards the equations derived under the assumption of small
transverse displacements; the results are not new, but they offer a different viewpoint. The variational form
of the equilibrium problem involves minimization of stress energy functional with constraints following
from the yield condition imposed on the values of moments in semi-rigid joints. Such an approach furnishes
a theoretical foundation for robust numerical analysis of large-scale frames in the full spectrum of joint
deformation: linearly elastic and perfectly plastic. The second theme of study concerns the beam subjected to
a large compressive force. The results obtained on the grounds of Bleich’s linear theory of stability include
slope-deflection equations and the implicit definition of the critical value of compressive force. In both
themes of interest, the outcomes of the paper essentially extend the findings documented in the literature.
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1. Introduction

The classical theory of beams admits only two types of connections: perfectly rigid and
perfectly flexible. Based on statical and kinematical arguments, the classification of perfect
joints is clear-cut. The rigid one transfers the bending moment, and the rotation angles of beam
cross-sections at both sides of the joint are equal; put differently, the rotation increment at
a rigid joint is zero. The mechanical characteristic of a flexible joint is opposite; it does not
transfer the moment, and the rotation increment is arbitrary. In engineering reality, connections
between structural elements do not always conform strictly to either category. Instead, they
function somewhere between these two ideals. Such joints are considered semi-rigid; they
transfer the bending moment and exhibit a non-zero rotation increment simultaneously.

Adopting semi-rigid joints in structural design requires a constitutive model, usually called
the moment-rotation characteristic. A comprehensive discussion by Celik and Sakar [1] offers
current state-of-the-art and recent developments regarding semi-rigid joints. Specifically, the
authors recapitulated various models of the moment-rotation relation. Two aspects are of
special interest for the present work. The first concerns the joints being stand-alone mechanical
objects; in the same scope, Koztowski and Brédka [2] compared and evaluated numerous
semi-rigid constitutive models of joints in steel structures. The second aspect addresses the
principles of the analytical and numerical approaches to frames with semi-rigid joints. Similar
issues are also discussed in the review paper by Gizejowski et al. [3].

In this study, the moment-rotation characteristic of semi-rigid joints is set to be linearly
elastic-perfectly plastic (elastoplastic, for short). The constitutive formula for semi-rigidity
is symmetric concerning the sign of rotation increment; this assumption agrees with the
conclusions of the research regarding progressive collapse in Kukla et al. [4]. The elastoplastic
model is approved by design codes and standards (Eurocode [5], in particular) for the analysis
of joints in steel structures subject to static loading.

The first objective is to formulate slope-deflection equations for a beam with semi-rigid
joints under the assumption of small transverse displacements (deflections) within the classical
Euler-Bernoulli beam theory. The problem is not new; it has been dealt with in many textbooks,
e.g., Weaver and Gere [6] or Karnovsky and Lebed [7]. Results of the present study offer
a different viewpoint based on the approach of Lewiriski [8]. Slope-deflection equations in the
new setting have a simple form despite involving more parameters than the equations used for
calculations of beams with perfectly rigid joints.

The second objective is to obtain slope-deflection equations for the same beam subjected
to a large compressive force. The study is based on the linear theory of stability by Bleich,
cf. Zyczkowski [9]. Partial results can be found in [7, 9], but detailed explanations are not
documented in the literature. The implicit definition of the critical value of the compressive
force is also a novel concept.

Discussion aligns with research concerning the optimum design of elastoplastic structures
in Larsen et al. [10], who put forward a computational algorithm for identifying optimal beam
grillage layouts, and the analysis by Czarnecki and Lewinski [11] concentrated on theoretical
and numerical aspects of optimal design of a two-dimensional elastoplastic continuum.
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Technical issues determining the moment-rotation characteristic of semi-rigid connections
lie beyond the scope of the discussion in this paper. These are, for example, shapes of cross-
sections of connected elements, technology used for the assembling of the connection, etc.
Consequently, questions regarding experimental validation of theoretical formulas are not put
forward. Interested readers are referred to [12] and other publications specialized in this topic.

The paper is organized as follows: in Section 2, slope-deflection equations for a slender
beam with semi-rigid joints are derived, and the equilibrium problem in the variational form is
formulated. Next, the discussion is reset to embrace the case of frames composed of an arbitrary
number of slender elements interconnected by semi-rigid elastoplastic joints. In Section 3, the
case of a beam subjected to a large compressive force is analyzed. Sections 2 and 3 contain
examples illustrating the concepts. Discussion and conclusions are given in Section 4.

2. Slender beam with semi-rigid joints

2.1. Mechanical setting

Consider a straight, slender beam (Fig. 1) and assume that it is connected to adjacent nodes
through joints that are semi-rigid concerning rotation about the y-axis (flexural rotation) and
rigid otherwise.

%k EI K’ z

i 4

Fig. 1. Beam considered in Section 2. Symbol X at the beam ends represents a semi-rigid joint; other
symbols are explained in the text. Axis y is perpendicular to the xz-plane and runs towards the observer

The beam is elastic, EI denotes its bending stiffness within the span (0, /). We also set %
and k? for the flexural stiffnesses of the left- and right-end joint, respectively. The values of %k
and k?, for which a joint may be classified as semi-rigid, are discussed in [5].

To measure transverse displacement, we introduce the deflection function w, and we write
w, %, and w?, ¢’ for deflections and angles of rotation of the left- and right-end node,
respectively. In what follows, we use f(g) to explicitly express the dependence of function fon
another function g. Then, the value of f(g) at given x € (0, ) will be denoted by f(g)(x).

Applying the classical Euler-Bernoulli kinematical hypothesis for slender beams, we obtain

@1 e =S k(= -2

where: ¢ — angle of rotation of the cross-section, x — bending deformation measure.
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Jump discontinuity of ¢ is allowed at semi-rigid joints. This yields the finite increment of
angle of rotation, or the rotation increment for short. It is defined by

(2.2) n(w)=—(¢" (W) =@~ (W)

where: ¢*, ¢~ — angles of rotation on both sides of the semi-rigid joint, respectively.
Since joints are situated at beam ends, then (Fig. 2a),

d d
23) 1 (w) (0) = - (a””((n - "90), n(w) (1) = —( - awm)
but a more convenient notation is % (w) = (w) (0) and n° (w) = —n (w) (1),

4 ) =% = TH0), 1 () = = T

% ’—S/ OM(\

. RS Y
MO

aw ()

(a) (b)

Fig. 2. Graphical explanation of the relations in Eq. (2.3)—(2.6)

We call a function w kinematically admissible, and denote it w € K, if the following two
requirements are met:
i) w is continuous in the span of the beam and satisfies the boundary conditions

(2.5) w(0) =w, w(l)=w°

ii) ¢ is continuous in the span of the beam and admits rotation increments at semi-rigid
joints.
Let M stand for the bending moment and denote the values of M at the left- and right-end
of the beam, respectively, as (Fig. 2b),

2.6) oM =M(©0), M°=-M()

Note that left- and right-end bending moments defined in this way are co-directed with
the corresponding rotation increments in Eq. (2.4).

Using standard arguments of the classical theory of beams, we get the variational
equation of beam equilibrium,

1
@.7) / M (w) dx +°M% (w) + M%° (w) = f (W) Vw e K
0
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where: .

@8) 70 = [ e o+ my
0

and

2.9) OX:%_wOl;"w, onsoo_@

The moment-rotation (or rather, moment-rotation increment) characteristic of a semi-
rigid joint is assumed to be elastoplastic; hence, °M and M are constrained by yield
conditions

(2.10) M| < "My, |M°] < M

where: °M,, M[‘)’1 — plastic limits of moments developed in the left- and right-end
semi-rigid joints, respectively.

We will write M € S to denote that M is in equilibrium with ¢ in the sense of Eq. (2.7).
Moreover, we set M € H for M satisfying the yield conditions in Eq. (2.10). Function M is
said to be statically admissible if M € S N H.

Two possible scenarios of mechanical response of the beam follow from the conditions in
Eq. (2.10). In the first scenario, the values of °M and M? are strictly lower than their respective
thresholds, so relations in Eq. (2.10) are realized as strict inequalities. Then, the span and both
end joints work in the elastic range, and there exist w € K and M € S NH corresponding to the
equilibrium of the beam. They are compatible in the sense that they are linked by linear relations,

o

o
@ K =g N = 1) = T

In the second scenario, at least one relation in Eq. (2.10) is realized as equality. The beam
falls into the elastoplastic range; functions w and M still correspond to the equilibrium of the
beam, but their compatibility is retained only in the span (0, /), which means that only the first
identity in Eq. (2.11) remains valid. The second and third are subject to modifications put
forward in Section 2.3.

2.2. Slope-deflection equations

The task is now to discuss in greater detail the bending problem posed for the beam in the
elastic work regime. Our specific goal is to derive slope-deflection equations, which are the
relations linking the left- and right-end moments with the left- and right-end deflections and
rotations. We emphasize that slope-deflection equations are insensitive to the load g applied
within span (0, /). Hence, we temporarily assume ¢ = 0. We also set E/ (x) = const.

The reasoning leading to the definition of w is based on standard techniques of the
mechanics of structures. As a result, we get the differential equation,

d4
(2.12) KY(X) -0
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with boundary conditions

El d
(2.13) w(0) =, M(0) = "tT (”<p— EW(O))

w(l)=w°, -M(l)= t"% (900 - %V(l))

where: % = %kl /(EI) and t° = k°l/(EI).
Tedious but straightforward algebraic manipulations finally give slope-deflection equations
for left- and right-end moments. Equations (2.6) become now

El
(2.14) M = == (4Fy (1,1°) % + 2F; (*1.1°) X°)

EI
MO = - (2F, (1°,%) °x +4F (t°,%) x°)

where:
3 a(b+3)
@15 F (a’b)_ab+4(al;|-b)+12
a

Blab) = T m+ 12

We leave it to the reader to verify that passing with arguments of functions in Eq. (2.15) to
their extremes (0 or +c0) leads to slope-deflection equations for beams with ideal joints. For
the reason of completeness of the discussion, let us mention that in the case ¢ # 0, the span
load induces additional end moments, which must be added to the right-hand sides of formulae
in Eq. (2.14).

Deflection functions are not reported explicitly due to their complexity; a simple example
is provided in Section 2.3.

Consider now the energy functional

1
M2 (OM)Z (M())Z
(2.16) o = [ acs O O

0

According to Duvaut and Lions [13], the variational problem
2.17) (P): min{cb(ﬁ) |MeSm‘H}

furnishes the bending moment function corresponding to the equilibrium of the beam.
Note that (P) embraces the full spectrum of mechanical response, including both elastic and
elastoplastic regimes of semi-rigid joints.
When plastic deformations, denoted henceforth by “;,; and r]gl, start to develop in semi-rigid
joints, then the second and third relations in Eq. (2.11) become
o o
@.18) 00 =+ 1700 = T
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We emphasize that % and 17;’1 are not compatible with any kinematically admissible
deflection function. Nevertheless, the complete solution to the equilibrium problem in the
elastoplastic regime of deformation is possible. Indeed, using the methods of Lagrange duality,
cf. Luenberger [14], one may derive a dual variational problem, say (P*). It turns out to be
the maximum problem posed in terms of variable w € K. Functions M € SNH and w € K
solving the problems (P) and (P*), respectively, are obtained independently. In the last step,
one may apply the solutions in the first identity in Eq. (2.11), and the relations in Eq. (2.18).

2.3. Example

For a simple example illustrating the discussion above, consider the beam in Fig. 3. The
left-end joint of the beam is semi-rigid, and the right-end one is perfectly rigid. The beam is
subjected to deflection w? of the right-end node. Our interest is in calculating the limit value
of w?, for which the moment in the left-end joint achieves the threshold [°M| = °M .

7 y
A% El E 7
w
| z )

z l 7
Fig. 3. Beam from Example 2.4

We solve Eq. (2.12), applying “w = % = ¢° = 0 in the boundary conditions Eq. (2.13). As

aresult, we get 6EI % w°

2.1 oM = =
(2-19) I or+4

Then, from [°M| = °M, it follows that

1> %+4
(220) Wﬁmil = _@TO pl

2.4. Extension to frames with semi-rigid joints

Let us now extend the discussion above to the case of a frame composed of m members
(bars) with semi-rigid joints; the neutral axes of bars intersect at n nodes. The frame is assumed
to be kinematically stable under the action of any load applied to it. Proper support constrains the
displacements of nodes. Set d for the number of unconstrained nodal displacements, typically
referred to as degrees of freedom, and introduce v € R to denote the vector of degrees of
freedom. Any such vector is kinematically admissible; by abuse of notation, we write v € K.

Each member of the frame undergoes elastic deformation of two types: axial and flexural.
The latter is limited to the local xz-plane, but extending the results to the case of general
bending and torsion (without warping) is immediate and thus omitted here for clarity. For the
treatment of beam deformation, we introduce vectors:
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(2.21) A(v) =Bv, x(v)=°Bv, x°(v)=B%

where: B — axial deformation matrix, °B, B® — bending deformation matrices. The matrices
are elements of R"*¢ constructed according to the well-known principles of finite element
programming.

With e = 1,...,m labeling the components of deformation vectors, we have

(2.22) Ae =u = u,

and the definitions of %y, (v) and 2 (v) follow from Eq. (2.9). Symbols %u,, ‘w., %., and
ug, we, ¢o, denote axial displacements, transverse displacements (deflections), and angles of
rotation of the left-end node and right-end node of the e-th element, respectively.

Next, we consider square diagonal constitutive matrices (elements of R™*™),

EA EA
(2.23) E = diag ( ! —'”)

TR
where: E A, — axial stiffness, A, — cross-section area of e-th element and
(2.24) D’ = diag (D}, ...,D,,), D" =diag(DY,...,D,,)
with, cf. Eq. (2.15),

El, El,
Fl(te, 0)7 D’e’:

le e

(2.25) D, =

FZ(te’ )

Let N, °M, and M? denote the vectors (elements of R™) of axial forces and left- and
right-end moments respectively. They are given by

(2.26) N = E(Bv)

(2.27) °M =4D'(°Bv) +2D” (B°v), M? =2D’ (°Bv) +4D" (B°v)
Following Eq. (2.10), we set the yield conditions
(2.28) [°M]| < °Mp;,  [M?] < M;l

where: My, M§1 — vectors of plastic limits of bending moments developed in semi-rigid joints.
Both ‘<’ relations must be satisfied elementwise.

We leave it to the reader to verify that the equilibrium equation for all nodes of the frame
states

(2.29) B'N+(°B)T °M + (B°)T M° =P

where: P — vector of nodal loads (element of RY).
Definition of statical admissibility introduced in Section 2.1 for a single bar naturally extends
to bar structures. We write (N, °M, M?) € S to denote that N, M, and M? are in equilibrium
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in the sense of Eq. (2.29). Moreover, we set (°M, M?) € H for °M and M° satisfying the yield
conditions in Eq. (2.28). A triplet (N, °M, M?) € S N H is said to be statically admissible.

If semi-rigid joints operate in the elastoplastic mode of deformation, then (N, °M, M?)
corresponding to the equilibrium of the frame is obtained via the minimum stress energy
problem, cf. the discussion in Section 2.2. By abuse of notation, define the stress energy
functional for the frame

(Ve QMo ME)) S (M) (M)
EA, El,

2.30 ® (N,°M,M?°) = le
(2.30) ( ) Zl( + T w0

e=1

where: Q(°M,, M?) — the integral of (M.,)? over the span (I,) in case of linear distribution of
bending moment function M,.
The equilibrium problem

(2.31) (P#) : Minimize @ (N,°M, M?)
subject to: BTN+ (°B)T °M + (B)T M? =P
[°M] < oMpl
IM?| < Mgl

embraces the full spectrum of mechanical response of the frame, including both elastic and
elastoplastic regimes of semi-rigid joints. In this meaning, (Py) is an extension of (P) put
forward in Section 2.2.

3. Stability

3.1. Slope-deflection equations

Consider now the problem of a slender, straight, prismatic, and homogeneous beam with
semi-rigid joints at both ends, subjected to a large axial compressive force S. Here, we follow
Bleich’s theory, cf. Zyczkowski [9], assuming that the value of S > 0 is fixed.

In this scope, the discussion is limited to deriving the formula for the critical value S, of
the large compressive force under classical assumptions of Euler’s theory of stability [9]. In this
context, the straight-line equilibrium configuration of the beam becomes unstable for S = S,
and the possible failure is due to purely elastic buckling. The axial stress corresponding to S,
does not exceed the yield stress for the material of the beam; this requirement is satisfied for
slender bars made of materials typically used for civil engineering constructions. Post-critical
behavior, i.e., analysis of the equilibrium path for S > S, is not tackled in this study.

Following Bleich’s approach, large axial force S is accounted for in the equilibrium
equation of the beam with respect to bending. With this, the variational formula in Eq. (2.7)
becomes,

l
3.1) / (M (%) — S (w) () dx + M (i0) + MO (%) = f () Vi € K
0

where: f(w) — as in Eq. (2.8), w € K — the actual deflection function.
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The differential formula in Eq. (2.12) is replaced by
d*w () + S d*w
ot T EL a2
with boundary conditions as in Eq. (2.13). Assuming temporarily that % = t° = ¢, and setting
the axial load parameter o, such that

(32) (x) =0

Si?
2 _ _
(3.3) ot = 7
we get the counterparts of formulae in Eq. (2.14). They are given by
El
(3:4) M =~ (G1 (1.0) % + G2 (1,0) x°)
El
M? === (G2 (1,0) °x + G1 (1,0) x°)
where:

a%6 (sin@ — 6 cos 0) + ab sin 6
63 sin@ +2a6 (sinf — G cos8) +a?(2 —2cosH — Hsin §)
a?6 (0 — sin 0)
63 sin @ +2a6 (sinf — G cos ) +a?(2 —2cosf — fsinh)

3.5) Gi(a,0) =

G2 (a, 9) =

3.2. Critical values of axial forces

Considering Eq. (3.2) with “w = w? = % = ¢ = 0 in the boundary conditions Eq. (2.13),
we turn to the Euler’s critical load problem. Setting back the different values of % and ¢, we
obtain the implicit definition of o,

(3.6) d(°,t°,04)=0
where: o, — critical value of axial load parameter o, and
(3.7 d(a,b,0) =6>sin0+06 (sind —Ocosb) (a+b)+ab(2—2cos — Osinb)

Note that the denominators in Eq. (3.5) are given by d(a, a, 0).

3.3. Example

Figure 4 displays the contour plot of function d (%, t°, o) = 0. Each contour corresponds
to some value of o, in the interval (i, 27r). The critical load for a beam with perfectly flexible
joints (pins) at both ends is defined through Eq. (3.3) for o = &, and o, = 27 gives S, for
a beam whose connections at the ends are perfectly rigid. These two solutions are unique in
the sense that they relate to single points: ¢t =t = 0 and ?t = t° = +oo, respectively.

Intermediate values of o realize for infinitely many pairs (%, ). For example, the critical
value o = 1.437 pertains not only to a beam with perfectly rigid and perfectly flexible
supports at opposite ends (°¢ = 0 and t° = +00), but also for a variety of semi-rigid connections.
In particular, o, ~ 1.437 defines the critical load also in case of % = * = 3.59.
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ot
404
oo = 1.971
304
20
104 oo = 1.81
o = 1.31
o = 1.1

Ger = 1.21

Oer = 1.61
Oer = 1.1 Oer = 1.51
0 T T T T o Ocr = 1.43n
0 10 20 30 4 t

Fig. 4. Contour plot of the function defined by Eq. (3.6). The curve o¢; = 1.437 is discussed in the text

4. Conclusions

The basic problem of a single beam with semi-rigid elastoplastic joints furnishes a theoretical
foundation for robust numerical analysis of large-scale frames with semi-rigid connections in
the full spectrum of joint deformation: linearly elastic and perfectly plastic. This is due to the
computational possibilities offered by the variational formulation in Eq. (2.17) and Eq. (2.30).
Large-scale bar constructions require algebraic formulation of equilibrium equations, but
this should pose no additional problem, as appropriate procedures are well known in finite
element programming.

The minimum stress energy problem falls into the framework of convex optimization. Full
discussion of this issue requires specialized mathematical tools and thus lies beyond the scope
of the present study. Loosely speaking, the main argument lies in the fact that the stress energy
functional and the constraints define convex sets.

Another possible application of the principles governing the large-scale problem is the
optimum design of frames with semi-rigid joints. Csébfalvi [15] tackled this topic in the
elastic range of joint behavior by means of the genetic algorithm. Generalizing the approach to
embrace the elastoplastic range seems to be an open problem.

In the scope of stability, it is interesting to construct the so-called buckling stability region.
By this, we mean considering two or more large compressive forces acting simultaneously
along the axes of several elements of the frame and determining the range of values for which
the elements do not buckle.
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Rownowaga i statecznoS¢ pretow ze sprezystoplastycznymi
weztami podatnymi

Stowa kluczowe: sformufowanie wariacyjne, sprezystoplastyczno$é, statecznos$é, wezly podatne,
wzory transformacyjne

Streszczenie:

Klasyczna teoria Eulera—Bernoulliego pretéw zginanych uwzglednia jedynie dwa rodzaje pofaczen:
idealnie sztywne i idealnie podatne (przegubowe). Réznice miedzy nimi tatwo okresli¢ na podstawie
rozwazafi statycznych i kinematycznych. Wezly podatne przekazuja moment zginajacy, zas katy obrotu
przekrojéw po obu stronach polaczenia sg jednakowe; inaczej méwiac, przyrost kata obrotu jest réwny
zeru. Charakterystyka przegubu jest skrajnie przeciwna. Moment nie jest przekazywany, a przyrost
kata obrotu jest dowolny. Praktyka inzynierska pokazuje jednak, ze rzeczywiste potaczenia elementéw
konstrukcji wymykajga si¢ tej klasyfikacji. Obok potaczen idealnych istnieja wezly podatne, nazywane
takze pétsztywnymi. Sa one zdolne do przekazywania momentu zginajacego przy réznym od zera
przyroScie kata obrotu przekroju. Wilaczenie weztéw podatnych do katalogu rozwiazan projektowych
wymaga opracowania konstytutywnego modelu potaczenia, zwykle nazywanego krzywa momentu-obrotu.
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Autorzy publikacji [1] wyczerpujaco omawiaja stan wspdlczesnej wiedzy i kierunki rozwoju teorii
konstrukcji stalowych z weztami podatnymi. Wsréd wielu podjetych w [1] watkéw, dwa sa szczegdlnie
interesujace w odniesieniu do zagadnien poruszanych w niniejszej pracy. Pierwszy dotyczy rozmaitych
propozycji przebiegu krzywej momentu-obrotu; ten temat jest omawiany takze w obszernej monografii [2].
Drugi watek obejmuje analityczne i numeryczne rozwazania na temat zasad projektowania ram z wezlami
podatnymi. Podobne zagadnienie jest trescia przegladowej publikacji [3]. Przedlozona praca opiera si¢
na zalozeniu funkcji momentu-obrotu opisujacej sprezystoplastyczne (SciSlej liniowo sprezyste-idealnie
plastyczne) prawo konstytutywne wezla podatnego. Zwiazek fizyczny jest symetryczny wzgledem znaku
przyrostu kata obrotu. Przyjecie takiej formuty wpisuje si¢ w wyniki badan dotyczacych zagadnienia
postepujacej katastrofy, por. [4]. W §wietle norm projektowych, np. Eurokodu [5], stosowanie modelu kon-
stytutywnego sprezystoplastycznosci w opisie zachowania wezta podatnego jest dopuszczalne w analizie
potaczeni elementéw konstrukcji stalowych poddanych obciazeniom statycznym. Gléwnym celem pracy
bylo opisanie zadania réwnowagi preta zginanego z weztami sprezystoplastycznymi umieszczonymi
na obu kraricach. W szczegdlnosci podjeto dwa zadania. Pierwsze dotyczyto wyprowadzenia wzoréw
transformacyjnych w ramach klasycznej teorii Eulera—Bernoulliego, zas drugie obejmowato przypadek
dodatkowego obciaZenia osiowg silg Sciskajaca o znacznej, ale znanej wartosci, zgodnie z wymaganiami
liniowej teorii Bleicha, por. [9]. W tym zakresie rozwazan wyprowadzono takze niejawng formute okresla-
jaca warto$¢ sity krytycznej w zagadnieniu wyboczenia preta smuklego. Wyniki uzyskane w zakresie teorii
klasycznej pokrywaja si¢ z wynikami znanymi z literatury, jednak ponowne ich wyprowadzenie w duchu
pracy [8] pozwolilo na istotne uproszczenie zapisu. Ma to szczegdlne znaczenie wobec zwiekszonej liczby
parametréw zadania zginania preta z wezlami podatnymi w poréwnaniu z zadaniem, w ktérym wezty sg
idealnie sztywne. Badania w zakresie uwzgledniajacym dziatanie duzej sily osiowej byty prowadzone
przez autoréw monografii [7,9], ale podane rezultaty sg niepetne. Literatura nie podaje takze formuly
pozwalajacej okresli¢ wartos¢ sity krytycznej w zagadnieniu wyboczenia preta z weztami podatnymi, co
sktania do wniosku, ze zwiazki wyprowadzone w niniejszej pracy byly dotychczas nieznane. Cel rozwazan
jest zbiezny z badaniami prowadzonymi w zakresie optymalnego projektowania konstrukeji, por. [10],
gdzie przedstawiono wyniki dotyczace rusztéw sprezystoplastycznych, a takze [11], gdzie oméwiono
zadanie optymalizacji sprezystoplastycznych plyt obciazonych w swojej ptaszczyznie. Uktad pracy jest
nastepujacy. W rozdziale 2 wyprowadzono wzory transformacyjne zginania preta z weztami podatnymi
rozmieszczonymi na obu kraficach oraz sformutowano wariacyjne zagadnienie réwnowagi polegajace na
minimalizacji energii komplementarnej z ograniczeniami warto§ci momentéw w weztach podatnych
zgodnie z przyjetym warunkiem uplastycznienia. Nastgpnie, rozszerzono rozwazania na przypadek ram
z dowolna liczbg pretéw. W rozdziale 3 oméwiono przypadek preta poddanego dziataniu duzej sity Sciska-
jacej. Tredcig rozdziatu 4 sg wnioski z pracy. Gtéwne spostrzezenie dotyczy mozliwosci, jakie niesie ze
sobg wariacyjne sformulowanie zadania minimum energii komplementarnej. Rozszerzenie tego ujecia na
przypadek konstrukcji wielopretowych z wezlami pracujacymi w pelnym zakresie sprezystoplastycznosci
wymaga zastosowania metod algebraizacji réwnan réwnowagi. To zadanie jest mozliwe do wykonania
wobec mozliwosci oferowanych przez algorytmy programowania skoniczenieelementowego. Ponadto
mozliwe jest opracowanie metody numerycznej minimalizacji funkcjonatu energii komplementarnej
w ramach programowania wypuklego. Do takiego wniosku skiania fakt, Ze funkcjonat energii i funkcje
ograniczajace definiujg zbiory wypukle. Inng realng perspektywa jest sformutowanie i rozwigzanie
zadania optymalnego projektowania ram ze sprezystoplastycznymi weztami podatnymi. Ten watek byt
poruszony w pracy [15] jedynie w zakresie sprezystej odpowiedzi weztéw. Interesujacym zagadnieniem
z zakresu statecznoSci jest opis tzw. obszaru bezpiecznego, to jest zbioru warto$ci dwu lub wigcej,
jednoczesnie dziatajacych sit osiowych niepowodujacych wyboczenia konstrukcji.
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