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Equilibrium and stability of beams with elastoplastic
semi-rigid joints
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Abstract: The classical theory of beams admits two types of connections between structural elements:
perfectly rigid and perfectly flexible. However, the engineering reality calls for a more general approach to
joint modelling. A non-ideal connection type is called semi-rigid. Its moment-rotation characteristic links
the bending moment developed at the joint with the non-zero rotation increment between both sides of the
connection. In the paper, the moment-rotation characteristic is assumed to be linearly elastic-perfectly plastic,
and not sensitive to the sign of the rotation increment. Posed in the framework of Euler-Bernoulli’s theory of
beams, the main objective of the paper is to formulate slope-deflection equations for a beam with semi-rigid
joints. Two themes are considered. The first regards the equations derived under the assumption of small
transverse displacements; the results are not new, but they offer a different viewpoint. The variational form
of the equilibrium problem involves minimization of stress energy functional with constraints following
from the yield condition imposed on the values of moments in semi-rigid joints. Such an approach furnishes
a theoretical foundation for robust numerical analysis of large-scale frames in the full spectrum of joint
deformation: linearly elastic and perfectly plastic. The second theme of study concerns the beam subjected to
a large compressive force. The results obtained on the grounds of Bleich’s linear theory of stability include
slope-deflection equations and the implicit definition of the critical value of compressive force. In both
themes of interest, the outcomes of the paper essentially extend the findings documented in the literature.
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1. Introduction

The classical theory of beams admits only two types of connections: perfectly rigid and
perfectly flexible. Based on statical and kinematical arguments, the classification of perfect
joints is clear-cut. The rigid one transfers the bending moment, and the rotation angles of beam
cross-sections at both sides of the joint are equal; put differently, the rotation increment at
a rigid joint is zero. The mechanical characteristic of a flexible joint is opposite; it does not
transfer the moment, and the rotation increment is arbitrary. In engineering reality, connections
between structural elements do not always conform strictly to either category. Instead, they
function somewhere between these two ideals. Such joints are considered semi-rigid; they
transfer the bending moment and exhibit a non-zero rotation increment simultaneously.

Adopting semi-rigid joints in structural design requires a constitutive model, usually called
the moment-rotation characteristic. A comprehensive discussion by Celik and Sakar [1] offers
current state-of-the-art and recent developments regarding semi-rigid joints. Specifically, the
authors recapitulated various models of the moment-rotation relation. Two aspects are of
special interest for the present work. The first concerns the joints being stand-alone mechanical
objects; in the same scope, Kozłowski and Bródka [2] compared and evaluated numerous
semi-rigid constitutive models of joints in steel structures. The second aspect addresses the
principles of the analytical and numerical approaches to frames with semi-rigid joints. Similar
issues are also discussed in the review paper by Giżejowski et al. [3].

In this study, the moment-rotation characteristic of semi-rigid joints is set to be linearly
elastic-perfectly plastic (elastoplastic, for short). The constitutive formula for semi-rigidity
is symmetric concerning the sign of rotation increment; this assumption agrees with the
conclusions of the research regarding progressive collapse in Kukla et al. [4]. The elastoplastic
model is approved by design codes and standards (Eurocode [5], in particular) for the analysis
of joints in steel structures subject to static loading.

The first objective is to formulate slope-deflection equations for a beam with semi-rigid
joints under the assumption of small transverse displacements (deflections) within the classical
Euler-Bernoulli beam theory. The problem is not new; it has been dealt with in many textbooks,
e.g., Weaver and Gere [6] or Karnovsky and Lebed [7]. Results of the present study offer
a different viewpoint based on the approach of Lewiński [8]. Slope-deflection equations in the
new setting have a simple form despite involving more parameters than the equations used for
calculations of beams with perfectly rigid joints.

The second objective is to obtain slope-deflection equations for the same beam subjected
to a large compressive force. The study is based on the linear theory of stability by Bleich,
cf. Życzkowski [9]. Partial results can be found in [7, 9], but detailed explanations are not
documented in the literature. The implicit definition of the critical value of the compressive
force is also a novel concept.

Discussion aligns with research concerning the optimum design of elastoplastic structures
in Larsen et al. [10], who put forward a computational algorithm for identifying optimal beam
grillage layouts, and the analysis by Czarnecki and Lewiński [11] concentrated on theoretical
and numerical aspects of optimal design of a two-dimensional elastoplastic continuum.
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Technical issues determining the moment-rotation characteristic of semi-rigid connections
lie beyond the scope of the discussion in this paper. These are, for example, shapes of cross-
sections of connected elements, technology used for the assembling of the connection, etc.
Consequently, questions regarding experimental validation of theoretical formulas are not put
forward. Interested readers are referred to [12] and other publications specialized in this topic.

The paper is organized as follows: in Section 2, slope-deflection equations for a slender
beam with semi-rigid joints are derived, and the equilibrium problem in the variational form is
formulated. Next, the discussion is reset to embrace the case of frames composed of an arbitrary
number of slender elements interconnected by semi-rigid elastoplastic joints. In Section 3, the
case of a beam subjected to a large compressive force is analyzed. Sections 2 and 3 contain
examples illustrating the concepts. Discussion and conclusions are given in Section 4.

2. Slender beam with semi-rigid joints

2.1. Mechanical setting

Consider a straight, slender beam (Fig. 1) and assume that it is connected to adjacent nodes
through joints that are semi-rigid concerning rotation about the 𝑦-axis (flexural rotation) and
rigid otherwise.

Fig. 1. Beam considered in Section 2. Symbol × at the beam ends represents a semi-rigid joint; other
symbols are explained in the text. Axis 𝑦 is perpendicular to the 𝑥𝑧-plane and runs towards the observer

The beam is elastic, 𝐸𝐼 denotes its bending stiffness within the span (0, 𝑙). We also set 𝑜𝑘

and 𝑘𝑜 for the flexural stiffnesses of the left- and right-end joint, respectively. The values of 𝑜𝑘

and 𝑘𝑜, for which a joint may be classified as semi-rigid, are discussed in [5].
To measure transverse displacement, we introduce the deflection function 𝑤, and we write

𝑜𝑤, 𝑜𝜑, and 𝑤𝑜, 𝜑𝑜 for deflections and angles of rotation of the left- and right-end node,
respectively. In what follows, we use 𝑓 (𝑔) to explicitly express the dependence of function 𝑓 on
another function 𝑔. Then, the value of 𝑓 (𝑔) at given 𝑥 ∈ (0, 𝑙) will be denoted by 𝑓 (𝑔) (𝑥).

Applying the classical Euler-Bernoulli kinematical hypothesis for slender beams, we obtain

(2.1) 𝜑 (𝑤) = d𝑤
d𝑥

, 𝜅 (𝑤) = −d𝜑 (𝑤)
d𝑥

where: 𝜑 – angle of rotation of the cross-section, 𝜅 – bending deformation measure.



318 G. DZIERŻANOWSKI

Jump discontinuity of 𝜑 is allowed at semi-rigid joints. This yields the finite increment of
angle of rotation, or the rotation increment for short. It is defined by

(2.2) 𝜂 (𝑤) = −
(
𝜑+ (𝑤) − 𝜑− (𝑤)

)
where: 𝜑+, 𝜑− – angles of rotation on both sides of the semi-rigid joint, respectively.

Since joints are situated at beam ends, then (Fig. 2a),

(2.3) 𝜂 (𝑤) (0) = −
(
d𝑤
d𝑥

(0) − 𝑜𝜑

)
, 𝜂 (𝑤) (𝑙) = −

(
𝜑𝑜 − d𝑤

d𝑥
(𝑙)

)
but a more convenient notation is 𝑜𝜂 (𝑤) = 𝜂 (𝑤) (0) and 𝜂𝑜 (𝑤) = −𝜂 (𝑤) (𝑙),

(2.4) 𝑜𝜂 (𝑤) = 𝑜𝜑 − d𝑤
d𝑥

(0), 𝜂𝑜 (𝑤) = 𝜑𝑜 − d𝑤
d𝑥

(𝑙)

(a) (b)

Fig. 2. Graphical explanation of the relations in Eq. (2.3)–(2.6)

We call a function 𝑤 kinematically admissible, and denote it 𝑤 ∈ K, if the following two
requirements are met:

i) 𝑤 is continuous in the span of the beam and satisfies the boundary conditions

(2.5) 𝑤(0) = 𝑜𝑤, 𝑤(𝑙) = 𝑤𝑜

ii) 𝜑 is continuous in the span of the beam and admits rotation increments at semi-rigid
joints.
Let 𝑀 stand for the bending moment and denote the values of 𝑀 at the left- and right-end
of the beam, respectively, as (Fig. 2b),

(2.6) 𝑜𝑀 = 𝑀 (0), 𝑀𝑜 = −𝑀 (𝑙)

Note that left- and right-end bending moments defined in this way are co-directed with
the corresponding rotation increments in Eq. (2.4).
Using standard arguments of the classical theory of beams, we get the variational
equation of beam equilibrium,

(2.7)
𝑙∫

0

𝑀𝜅 (𝑤) d𝑥 + 𝑜𝑀𝑜𝜂 (𝑤) + 𝑀𝑜𝜂𝑜 (𝑤) = 𝑓 (𝑤) ∀ 𝑤 ∈ K
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where:

(2.8) 𝑓 (𝑤) =
𝑙∫

0

𝑞𝑤d𝑥 + 𝑀𝑜𝜒𝑜 + 𝑜𝑀 𝑜𝜒

and

(2.9) 𝑜𝜒 = 𝑜𝜑 − 𝑤𝑜 − 𝑜𝑤

𝑙
, 𝜒𝑜 = 𝜑𝑜 − 𝑤𝑜 − 𝑜𝑤

𝑙

The moment-rotation (or rather, moment-rotation increment) characteristic of a semi-
rigid joint is assumed to be elastoplastic; hence, 𝑜𝑀 and 𝑀𝑜 are constrained by yield
conditions

(2.10) |𝑜𝑀 | ≤ 𝑜𝑀pl, |𝑀𝑜 | ≤ 𝑀𝑜
pl

where: 𝑜𝑀pl, 𝑀
𝑜
pl – plastic limits of moments developed in the left- and right-end

semi-rigid joints, respectively.
We will write 𝑀 ∈ S to denote that 𝑀 is in equilibrium with 𝑞 in the sense of Eq. (2.7).

Moreover, we set 𝑀 ∈ H for 𝑀 satisfying the yield conditions in Eq. (2.10). Function 𝑀 is
said to be statically admissible if 𝑀 ∈ S ∩H .

Two possible scenarios of mechanical response of the beam follow from the conditions in
Eq. (2.10). In the first scenario, the values of 𝑜𝑀 and 𝑀𝑜 are strictly lower than their respective
thresholds, so relations in Eq. (2.10) are realized as strict inequalities. Then, the span and both
end joints work in the elastic range, and there exist 𝑤 ∈ K and 𝑀 ∈ S∩H corresponding to the
equilibrium of the beam. They are compatible in the sense that they are linked by linear relations,

(2.11) 𝜅 (𝑤) = 𝑀

𝐸𝐼
, 𝑜𝜂 (𝑤) =

𝑜𝑀
𝑜𝑘

, 𝜂𝑜 (𝑤) = 𝑀𝑜

𝑘𝑜

In the second scenario, at least one relation in Eq. (2.10) is realized as equality. The beam
falls into the elastoplastic range; functions 𝑤 and 𝑀 still correspond to the equilibrium of the
beam, but their compatibility is retained only in the span (0, 𝑙), which means that only the first
identity in Eq. (2.11) remains valid. The second and third are subject to modifications put
forward in Section 2.3.

2.2. Slope-deflection equations

The task is now to discuss in greater detail the bending problem posed for the beam in the
elastic work regime. Our specific goal is to derive slope-deflection equations, which are the
relations linking the left- and right-end moments with the left- and right-end deflections and
rotations. We emphasize that slope-deflection equations are insensitive to the load 𝑞 applied
within span (0, 𝑙). Hence, we temporarily assume 𝑞 = 0. We also set 𝐸𝐼 (𝑥) = const.

The reasoning leading to the definition of 𝑤 is based on standard techniques of the
mechanics of structures. As a result, we get the differential equation,

(2.12)
d4𝑤

d𝑥4 (𝑥) = 0
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with boundary conditions
(2.13) 𝑤(0) = 𝑜𝑤, 𝑀 (0) = 𝑜𝑡

𝐸 𝐼

𝑙

(
𝑜𝜑 − d𝑤

d𝑥
(0)

)
𝑤(𝑙) = 𝑤𝑜, −𝑀 (𝑙) = 𝑡𝑜

𝐸𝐼

𝑙

(
𝜑𝑜 − d𝑤

d𝑥
(𝑙)

)
where: 𝑜𝑡 = 𝑜𝑘𝑙/(𝐸𝐼) and 𝑡𝑜 = 𝑘𝑜𝑙/(𝐸𝐼).

Tedious but straightforward algebraic manipulations finally give slope-deflection equations
for left- and right-end moments. Equations (2.6) become now

(2.14) 𝑜𝑀 =
𝐸𝐼

𝑙
(4𝐹1 (𝑜𝑡, 𝑡𝑜) 𝑜𝜒 + 2𝐹2 (𝑜𝑡, 𝑡𝑜) 𝜒𝑜)

𝑀𝑜 =
𝐸𝐼

𝑙
(2𝐹2 (𝑡𝑜, 𝑜𝑡) 𝑜𝜒 + 4𝐹1 (𝑡𝑜, 𝑜𝑡) 𝜒𝑜)

where:

(2.15) 𝐹1 (𝑎, 𝑏) =
𝑎 (𝑏 + 3)

𝑎𝑏 + 4 (𝑎 + 𝑏) + 12
𝐹2 (𝑎, 𝑏) =

𝑎𝑏

𝑎𝑏 + 4 (𝑎 + 𝑏) + 12

We leave it to the reader to verify that passing with arguments of functions in Eq. (2.15) to
their extremes (0 or +∞) leads to slope-deflection equations for beams with ideal joints. For
the reason of completeness of the discussion, let us mention that in the case 𝑞 ≠ 0, the span
load induces additional end moments, which must be added to the right-hand sides of formulae
in Eq. (2.14).

Deflection functions are not reported explicitly due to their complexity; a simple example
is provided in Section 2.3.

Consider now the energy functional

(2.16) Φ (𝑀) =
𝑙∫

0

𝑀2

𝐸𝐼
d𝑥 + (𝑜𝑀)2

𝑜𝑘
+ (𝑀𝑜)2

𝑘𝑜

According to Duvaut and Lions [13], the variational problem

(2.17) (𝑃) : min
{
Φ

(
𝑀

)
| 𝑀 ∈ S ∩H

}
furnishes the bending moment function corresponding to the equilibrium of the beam.

Note that (𝑃) embraces the full spectrum of mechanical response, including both elastic and
elastoplastic regimes of semi-rigid joints.

When plastic deformations, denoted henceforth by 𝑜𝜂pl and 𝜂𝑜pl, start to develop in semi-rigid
joints, then the second and third relations in Eq. (2.11) become

(2.18) 𝑜𝜂 (𝑤 ) =
𝑜𝑀
𝑜𝑘

+ 𝑜𝜂pl, 𝜂𝑜 (𝑤) = 𝑀𝑜

𝑘𝑜
+ 𝜂𝑜pl
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We emphasize that 𝑜𝜂pl and 𝜂𝑜pl are not compatible with any kinematically admissible
deflection function. Nevertheless, the complete solution to the equilibrium problem in the
elastoplastic regime of deformation is possible. Indeed, using the methods of Lagrange duality,
cf. Luenberger [14], one may derive a dual variational problem, say (𝑃∗). It turns out to be
the maximum problem posed in terms of variable 𝑤 ∈ K. Functions 𝑀 ∈ S ∩H and 𝑤 ∈ K
solving the problems (𝑃) and (𝑃∗), respectively, are obtained independently. In the last step,
one may apply the solutions in the first identity in Eq. (2.11), and the relations in Eq. (2.18).

2.3. Example

For a simple example illustrating the discussion above, consider the beam in Fig. 3. The
left-end joint of the beam is semi-rigid, and the right-end one is perfectly rigid. The beam is
subjected to deflection 𝑤𝑜 of the right-end node. Our interest is in calculating the limit value
of 𝑤𝑜, for which the moment in the left-end joint achieves the threshold |𝑜𝑀 | = 𝑜𝑀pl.

Fig. 3. Beam from Example 2.4

We solve Eq. (2.12), applying 𝑜𝑤 = 𝑜𝜑 = 𝜑𝑜 = 0 in the boundary conditions Eq. (2.13). As
a result, we get
(2.19) 𝑜𝑀 = −6𝐸𝐼

𝑙

𝑜𝑡
𝑜𝑡 + 4

𝑤𝑜

𝑙

Then, from |𝑜𝑀 | = 𝑜𝑀pl, it follows that
(2.20) 𝑤𝑜

limit = − 𝑙2

6𝐸𝐼

𝑜𝑡 + 4
𝑜𝑡

𝑜𝑀pl

2.4. Extension to frames with semi-rigid joints

Let us now extend the discussion above to the case of a frame composed of 𝑚 members
(bars) with semi-rigid joints; the neutral axes of bars intersect at 𝑛 nodes. The frame is assumed
to be kinematically stable under the action of any load applied to it. Proper support constrains the
displacements of nodes. Set 𝑑 for the number of unconstrained nodal displacements, typically
referred to as degrees of freedom, and introduce v ∈ 𝑅𝑑 to denote the vector of degrees of
freedom. Any such vector is kinematically admissible; by abuse of notation, we write v ∈ K.

Each member of the frame undergoes elastic deformation of two types: axial and flexural.
The latter is limited to the local 𝑥𝑧-plane, but extending the results to the case of general
bending and torsion (without warping) is immediate and thus omitted here for clarity. For the
treatment of beam deformation, we introduce vectors:
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(2.21) 𝚫(v) = Bv, 𝝌(v) = 𝑜Bv, 𝝌𝑜 (v) = B𝑜v

where: B – axial deformation matrix, 𝑜B, B𝑜 – bending deformation matrices. The matrices
are elements of 𝑅𝑚×𝑑 constructed according to the well-known principles of finite element
programming.

With 𝑒 = 1, . . . , 𝑚 labeling the components of deformation vectors, we have

(2.22) Δ𝑒 = 𝑢𝑜𝑒 − 𝑜𝑢𝑒

and the definitions of 𝑜𝜒𝑒 (v) and 𝜒𝑜
𝑒 (v) follow from Eq. (2.9). Symbols 𝑜𝑢𝑒, 𝑜𝑤𝑒, 𝑜𝜑𝑒, and

𝑢𝑜𝑒 , 𝑤𝑜
𝑒 , 𝜑𝑜

𝑒 , denote axial displacements, transverse displacements (deflections), and angles of
rotation of the left-end node and right-end node of the 𝑒-th element, respectively.

Next, we consider square diagonal constitutive matrices (elements of 𝑅𝑚×𝑚),

(2.23) E = diag
(
𝐸𝐴1
𝑙1

, . . . ,
𝐸 𝐴𝑚

𝑙𝑚

)
where: 𝐸𝐴𝑒 – axial stiffness, 𝐴𝑒 – cross-section area of 𝑒-th element and

(2.24) D′ = diag
(
𝐷′

1, . . . , 𝐷
′
𝑚

)
, D′′ = diag

(
𝐷′′

1 , . . . , 𝐷
′′
𝑚

)
with, cf. Eq. (2.15),

(2.25) 𝐷′
𝑒 =

𝐸𝐼𝑒

𝑙𝑒
𝐹1

(
𝑜𝑡𝑒, 𝑡

𝑜
𝑒

)
, 𝐷′′

𝑒 =
𝐸𝐼𝑒

𝑙𝑒
𝐹2

(
𝑜𝑡𝑒, 𝑡

𝑜
𝑒

)
Let N, 𝑜M, and M𝑜 denote the vectors (elements of 𝑅𝑚) of axial forces and left- and

right-end moments respectively. They are given by

(2.26) N = E(Bv)

(2.27) 𝑜M = 4D′ (𝑜Bv) + 2D′′ (B𝑜v) , M𝑜 = 2D′ (𝑜Bv) + 4D′′ (B𝑜v)

Following Eq. (2.10), we set the yield conditions

(2.28) |𝑜M| ≤ 𝑜Mpl, |M𝑜 | ≤ M𝑜
pl

where: 𝑜Mpl,M𝑜
pl – vectors of plastic limits of bending moments developed in semi-rigid joints.

Both ‘≤’ relations must be satisfied elementwise.
We leave it to the reader to verify that the equilibrium equation for all nodes of the frame

states

(2.29) BTN + (𝑜B)T 𝑜M + (B𝑜)T M𝑜 = P

where: P – vector of nodal loads (element of 𝑅𝑑).
Definition of statical admissibility introduced in Section 2.1 for a single bar naturally extends

to bar structures. We write (N, 𝑜M,M𝑜) ∈ S to denote that N, 𝑜M, and M𝑜 are in equilibrium
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in the sense of Eq. (2.29). Moreover, we set (𝑜M,M𝑜) ∈ H for 𝑜M and M𝑜 satisfying the yield
conditions in Eq. (2.28). A triplet (N, 𝑜M,M𝑜) ∈ S ∩H is said to be statically admissible.

If semi-rigid joints operate in the elastoplastic mode of deformation, then (N, 𝑜M,M𝑜)
corresponding to the equilibrium of the frame is obtained via the minimum stress energy
problem, cf. the discussion in Section 2.2. By abuse of notation, define the stress energy
functional for the frame

(2.30) Φ (N, 𝑜M,M𝑜) =
𝑚∑︁
𝑒=1

(
(𝑁𝑒)2

𝐸𝐴𝑒

𝑙𝑒 +
𝑄

(
𝑜𝑀𝑒, 𝑀

𝑜
𝑒

)
𝐸𝐼𝑒

)
+

𝑚∑︁
𝑒=1

(
(𝑜𝑀𝑒)2

𝑜𝑘𝑒
+

(
𝑀𝑜

𝑒

)2

𝑘𝑜𝑒

)
where: 𝑄(𝑜𝑀𝑒, 𝑀

𝑜
𝑒 ) – the integral of (𝑀𝑒)2 over the span (𝑙𝑒) in case of linear distribution of

bending moment function 𝑀𝑒.
The equilibrium problem

(2.31) (𝑃#) : Minimize Φ (N, 𝑜M,M𝑜)
subject to: BT N+ (𝑜B)T 𝑜M + (B𝑜)T M𝑜 = P

|𝑜M| ≤ 𝑜Mpl
|M𝑜 | ≤ M𝑜

pl

embraces the full spectrum of mechanical response of the frame, including both elastic and
elastoplastic regimes of semi-rigid joints. In this meaning, (𝑃#) is an extension of (𝑃) put
forward in Section 2.2.

3. Stability

3.1. Slope-deflection equations

Consider now the problem of a slender, straight, prismatic, and homogeneous beam with
semi-rigid joints at both ends, subjected to a large axial compressive force 𝑆. Here, we follow
Bleich’s theory, cf. Życzkowski [9], assuming that the value of 𝑆 > 0 is fixed.

In this scope, the discussion is limited to deriving the formula for the critical value 𝑆cr of
the large compressive force under classical assumptions of Euler’s theory of stability [9]. In this
context, the straight-line equilibrium configuration of the beam becomes unstable for 𝑆 = 𝑆cr,
and the possible failure is due to purely elastic buckling. The axial stress corresponding to 𝑆cr
does not exceed the yield stress for the material of the beam; this requirement is satisfied for
slender bars made of materials typically used for civil engineering constructions. Post-critical
behavior, i.e., analysis of the equilibrium path for 𝑆 > 𝑆cr is not tackled in this study.

Following Bleich’s approach, large axial force S is accounted for in the equilibrium
equation of the beam with respect to bending. With this, the variational formula in Eq. (2.7)
becomes,

(3.1)
𝑙∫

0

(𝑀𝜅 (𝑤) − 𝑆𝜑 (𝑤) 𝜑 (𝑤)) d𝑥 + 𝑜𝑀𝑜𝜂 (𝑤) + 𝑀𝑜𝜂𝑜 (𝑤) = 𝑓 (𝑤) ∀𝑤 ∈ K

where: 𝑓 (𝑤) – as in Eq. (2.8), 𝑤 ∈ K – the actual deflection function.
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The differential formula in Eq. (2.12) is replaced by

(3.2)
d4𝑤

d𝑥4 (𝑥) + 𝑆

𝐸𝐼

d2𝑤

d𝑥2 (𝑥) = 0

with boundary conditions as in Eq. (2.13). Assuming temporarily that 𝑜𝑡 = 𝑡𝑜 = 𝑡, and setting
the axial load parameter 𝜎, such that

(3.3) 𝜎2 =
𝑆𝑙2

𝐸𝐼

we get the counterparts of formulae in Eq. (2.14). They are given by

(3.4) 𝑜𝑀 =
𝐸𝐼

𝑙
(𝐺1 (𝑡, 𝜎) 𝑜𝜒 + 𝐺2 (𝑡, 𝜎) 𝜒𝑜)

𝑀𝑜 =
𝐸𝐼

𝑙
(𝐺2 (𝑡, 𝜎) 𝑜𝜒 + 𝐺1 (𝑡, 𝜎) 𝜒𝑜)

where:

(3.5) 𝐺1 (𝑎, 𝜃) =
𝑎2𝜃 (sin 𝜃 − 𝜃 cos 𝜃) + 𝑎𝜃3 sin 𝜃

𝜃3 sin 𝜃 + 2𝑎𝜃 (sin 𝜃 − 𝜃 cos 𝜃 ) + 𝑎2 (2 − 2 cos 𝜃 − 𝜃 sin 𝜃)

𝐺2 (𝑎, 𝜃) =
𝑎2𝜃 (𝜃 − sin 𝜃)

𝜃3 sin 𝜃 + 2𝑎𝜃 (sin 𝜃 − 𝜃 cos 𝜃 ) + 𝑎2 (2 − 2 cos 𝜃 − 𝜃 sin 𝜃)

3.2. Critical values of axial forces

Considering Eq. (3.2) with 𝑜𝑤 = 𝑤𝑜 = 𝑜𝜑 = 𝜑𝑜 = 0 in the boundary conditions Eq. (2.13),
we turn to the Euler’s critical load problem. Setting back the different values of 𝑜𝑡 and 𝑡𝑜, we
obtain the implicit definition of 𝜎cr,

(3.6) 𝑑 (𝑜𝑡, 𝑡𝑜, 𝜎cr) = 0

where: 𝜎cr – critical value of axial load parameter 𝜎, and

(3.7) 𝑑 (𝑎, 𝑏, 𝜃) = 𝜃3 sin 𝜃 + 𝜃 (sin 𝜃 − 𝜃 cos 𝜃 ) (𝑎 + 𝑏) + 𝑎𝑏(2 − 2 cos 𝜃 − 𝜃 sin 𝜃)

Note that the denominators in Eq. (3.5) are given by 𝑑 (𝑎, 𝑎, 𝜃).

3.3. Example

Figure 4 displays the contour plot of function 𝑑 (𝑜𝑡, 𝑡𝑜, 𝜎cr) = 0. Each contour corresponds
to some value of 𝜎cr in the interval (𝜋, 2𝜋). The critical load for a beam with perfectly flexible
joints (pins) at both ends is defined through Eq. (3.3) for 𝜎cr = 𝜋, and 𝜎cr = 2𝜋 gives 𝑆cr for
a beam whose connections at the ends are perfectly rigid. These two solutions are unique in
the sense that they relate to single points: 𝑜𝑡 = 𝑡𝑜 = 0 and 𝑜𝑡 = 𝑡𝑜 = +∞, respectively.

Intermediate values of 𝜎cr realize for infinitely many pairs (𝑜𝑡, 𝑡𝑜). For example, the critical
value 𝜎cr ≈ 1.43𝜋 pertains not only to a beam with perfectly rigid and perfectly flexible
supports at opposite ends (𝑜𝑡 = 0 and 𝑡𝑜 = +∞), but also for a variety of semi-rigid connections.
In particular, 𝜎cr ≈ 1.43𝜋 defines the critical load also in case of 𝑜𝑡 = 𝑡𝑜 = 3.59.
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Fig. 4. Contour plot of the function defined by Eq. (3.6). The curve 𝜎cr = 1.43𝜋 is discussed in the text

4. Conclusions

The basic problem of a single beam with semi-rigid elastoplastic joints furnishes a theoretical
foundation for robust numerical analysis of large-scale frames with semi-rigid connections in
the full spectrum of joint deformation: linearly elastic and perfectly plastic. This is due to the
computational possibilities offered by the variational formulation in Eq. (2.17) and Eq. (2.30).
Large-scale bar constructions require algebraic formulation of equilibrium equations, but
this should pose no additional problem, as appropriate procedures are well known in finite
element programming.

The minimum stress energy problem falls into the framework of convex optimization. Full
discussion of this issue requires specialized mathematical tools and thus lies beyond the scope
of the present study. Loosely speaking, the main argument lies in the fact that the stress energy
functional and the constraints define convex sets.

Another possible application of the principles governing the large-scale problem is the
optimum design of frames with semi-rigid joints. Csébfalvi [15] tackled this topic in the
elastic range of joint behavior by means of the genetic algorithm. Generalizing the approach to
embrace the elastoplastic range seems to be an open problem.

In the scope of stability, it is interesting to construct the so-called buckling stability region.
By this, we mean considering two or more large compressive forces acting simultaneously
along the axes of several elements of the frame and determining the range of values for which
the elements do not buckle.
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Równowaga i stateczność prętów ze sprężystoplastycznymi
węzłami podatnymi

Słowa kluczowe: sformułowanie wariacyjne, sprężystoplastyczność, stateczność, węzły podatne,
wzory transformacyjne

Streszczenie:

Klasyczna teoria Eulera–Bernoulliego prętów zginanych uwzględnia jedynie dwa rodzaje połączeń:
idealnie sztywne i idealnie podatne (przegubowe). Różnicę między nimi łatwo określić na podstawie
rozważań statycznych i kinematycznych. Węzły podatne przekazują moment zginający, zaś kąty obrotu
przekrojów po obu stronach połączenia są jednakowe; inaczej mówiąc, przyrost kąta obrotu jest równy
zeru. Charakterystyka przegubu jest skrajnie przeciwna. Moment nie jest przekazywany, a przyrost
kąta obrotu jest dowolny. Praktyka inżynierska pokazuje jednak, że rzeczywiste połączenia elementów
konstrukcji wymykają się tej klasyfikacji. Obok połączeń idealnych istnieją węzły podatne, nazywane
także półsztywnymi. Są one zdolne do przekazywania momentu zginającego przy różnym od zera
przyroście kąta obrotu przekroju. Włączenie węzłów podatnych do katalogu rozwiązań projektowych
wymaga opracowania konstytutywnego modelu połączenia, zwykle nazywanego krzywą momentu-obrotu.
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Autorzy publikacji [1] wyczerpująco omawiają stan współczesnej wiedzy i kierunki rozwoju teorii
konstrukcji stalowych z węzłami podatnymi. Wśród wielu podjętych w [1] wątków, dwa są szczególnie
interesujące w odniesieniu do zagadnień poruszanych w niniejszej pracy. Pierwszy dotyczy rozmaitych
propozycji przebiegu krzywej momentu-obrotu; ten temat jest omawiany także w obszernej monografii [2].
Drugi wątek obejmuje analityczne i numeryczne rozważania na temat zasad projektowania ram z węzłami
podatnymi. Podobne zagadnienie jest treścią przeglądowej publikacji [3]. Przedłożona praca opiera się
na założeniu funkcji momentu-obrotu opisującej sprężystoplastyczne (ściślej liniowo sprężyste-idealnie
plastyczne) prawo konstytutywne węzła podatnego. Związek fizyczny jest symetryczny względem znaku
przyrostu kąta obrotu. Przyjęcie takiej formuły wpisuje się w wyniki badań dotyczących zagadnienia
postępującej katastrofy, por. [4]. W świetle norm projektowych, np. Eurokodu [5], stosowanie modelu kon-
stytutywnego sprężystoplastyczności w opisie zachowania węzła podatnego jest dopuszczalne w analizie
połączeń elementów konstrukcji stalowych poddanych obciążeniom statycznym. Głównym celem pracy
było opisanie zadania równowagi pręta zginanego z węzłami sprężystoplastycznymi umieszczonymi
na obu krańcach. W szczególności podjęto dwa zadania. Pierwsze dotyczyło wyprowadzenia wzorów
transformacyjnych w ramach klasycznej teorii Eulera–Bernoulliego, zaś drugie obejmowało przypadek
dodatkowego obciążenia osiową siłą ściskającą o znacznej, ale znanej wartości, zgodnie z wymaganiami
liniowej teorii Bleicha, por. [9]. W tym zakresie rozważań wyprowadzono także niejawną formułę określa-
jącą wartość siły krytycznej w zagadnieniu wyboczenia pręta smukłego. Wyniki uzyskane w zakresie teorii
klasycznej pokrywają się z wynikami znanymi z literatury, jednak ponowne ich wyprowadzenie w duchu
pracy [8] pozwoliło na istotne uproszczenie zapisu. Ma to szczególne znaczenie wobec zwiększonej liczby
parametrów zadania zginania pręta z węzłami podatnymi w porównaniu z zadaniem, w którym węzły są
idealnie sztywne. Badania w zakresie uwzględniającym działanie dużej siły osiowej były prowadzone
przez autorów monografii [7, 9], ale podane rezultaty są niepełne. Literatura nie podaje także formuły
pozwalającej określić wartość siły krytycznej w zagadnieniu wyboczenia pręta z węzłami podatnymi, co
skłania do wniosku, że związki wyprowadzone w niniejszej pracy były dotychczas nieznane. Cel rozważań
jest zbieżny z badaniami prowadzonymi w zakresie optymalnego projektowania konstrukcji, por. [10],
gdzie przedstawiono wyniki dotyczące rusztów sprężystoplastycznych, a także [11], gdzie omówiono
zadanie optymalizacji sprężystoplastycznych płyt obciążonych w swojej płaszczyźnie. Układ pracy jest
następujący. W rozdziale 2 wyprowadzono wzory transformacyjne zginania pręta z węzłami podatnymi
rozmieszczonymi na obu krańcach oraz sformułowano wariacyjne zagadnienie równowagi polegające na
minimalizacji energii komplementarnej z ograniczeniami wartości momentów w węzłach podatnych
zgodnie z przyjętym warunkiem uplastycznienia. Następnie, rozszerzono rozważania na przypadek ram
z dowolną liczbą prętów. W rozdziale 3 omówiono przypadek pręta poddanego działaniu dużej siły ściska-
jącej. Treścią rozdziału 4 są wnioski z pracy. Główne spostrzeżenie dotyczy możliwości, jakie niesie ze
sobą wariacyjne sformułowanie zadania minimum energii komplementarnej. Rozszerzenie tego ujęcia na
przypadek konstrukcji wieloprętowych z węzłami pracującymi w pełnym zakresie sprężystoplastyczności
wymaga zastosowania metod algebraizacji równań równowagi. To zadanie jest możliwe do wykonania
wobec możliwości oferowanych przez algorytmy programowania skończenieelementowego. Ponadto
możliwe jest opracowanie metody numerycznej minimalizacji funkcjonału energii komplementarnej
w ramach programowania wypukłego. Do takiego wniosku skłania fakt, że funkcjonał energii i funkcje
ograniczające definiują zbiory wypukłe. Inną realną perspektywą jest sformułowanie i rozwiązanie
zadania optymalnego projektowania ram ze sprężystoplastycznymi węzłami podatnymi. Ten wątek był
poruszony w pracy [15] jedynie w zakresie sprężystej odpowiedzi węzłów. Interesującym zagadnieniem
z zakresu stateczności jest opis tzw. obszaru bezpiecznego, to jest zbioru wartości dwu lub więcej,
jednocześnie działających sił osiowych niepowodujących wyboczenia konstrukcji.
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