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Research paper

Time-varying probability model of the reduction in bending
capacity of RC beams due to corrosion of steel bars

Peng Tan1, Shibin Kang2, Zhanqiang Feng3

Abstract: Due to the reduction in bending capacity of RC beams being affected by multiple stochastic
uncertainties, employing a deterministic function model to study the bending capacity of RC beams often
leads to analysis errors that are difficult to accept. This paper, by analyzing the significant discrepancies
between calculated values derived from computational models and results obtained from experiments,
adopts a model bias coefficient to describe the uncertainty of the computational model. Building on the
consideration of parameter and model uncertainties, this paper establishes a Bayesian neural network model
for predicting the bending load capacity of RC beams due to reinforcement corrosion. The model is compared
with the traditional Back Propagation (BP) neural networks and the Genetic Algorithm-optimized BP
(GA-BP) neural networks. The results indicate that the Bayesian neural network model has the least number
of iterations and the highest efficiency, with comparable average prediction accuracy to the commonly used
GA-BP neural network model. It improves the accuracy by 7.44% compared to the traditional BP neural
network model. Finally, based on case studies, the time-variant probability distribution of the bending
carrying capacity of corroded RC beams for a service life of 100 years is obtained. It is concluded that the
time-variant probability model of the resistance of corroded RC beams follows a log-normal distribution,
and the established Bayesian neural network model for predicting the time-variant resistance of corroded RC
beams yields better results.

Keywords: Bayesian neural network, corrosion, flexural bearing capacity, model uncertainty coefficient,
reinforced concrete beam

1Eng., China Road and Bridge Corporation, 100011, Beĳing, China, e-mail: zhc8210181915@163.com, ORCID:
0009-0002-6466-4079
2Eng., China Road and Bridge Corporation, 100011, Beĳing, China, e-mail: 1294090633@qq.com, ORCID: 0009-
0006-2816-0227
3Eng., China Road and Bridge Corporation, 100011, Beĳing, China, e-mail: 2817925934@qq.com, ORCID: 0009-
0004-1647-9092

https://doi.org/10.24425/ace.2025.155096
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:zhc8210181915@163.com
https://orcid.org/0009-0002-6466-4079
mailto:1294090633@qq.com
https://orcid.org/0009-0006-2816-0227
https://orcid.org/0009-0006-2816-0227
mailto:2817925934@qq.com
https://orcid.org/0009-0004-1647-9092
https://orcid.org/0009-0004-1647-9092


232 PENG TAN, SHIBIN KANG, ZHANQIANG FENG

1. Introduction

Research on the reduction in bending capacity of reinforced concrete (RC) beam has
always been a focal point in the field of civil engineering. In the preliminary stage of the
research, Domestic and foreign scholars almost all adopted deterministic function model
methods to analyze the resistance degradation process. Stewart et al. [1] adopted the structural
deterioration reliability model to study the trend of the bending strength reliability of reinforced
concrete continuous slab bridge. Ellingwood [2] studied the resistance degradation process
of civil infrastructure through quantitative data. However, since the resistance degradation is
affected by multiple random uncertainties, if deterministic function models are used to study
the structural resistance degradation, the resulting analysis errors are often unacceptable [3].

To better investigate the randomness of structural parameters and the time-variability of
resistance in the resistance degradation process, domestic and foreign scholars have constructed
a variety of resistance degradation models in recent years, including probability prediction
models and neural network models. Yu et al. [4], targeting the defects of traditional deterministic
models and taking into account the influence of both subjective and objective uncertainties, com-
bined with Bayesian theory, established the probabilistic model for calculating the shear bearing
capacity of corroded RC beams. Šomodíková et al. [5] proposed a probabilistic determination
method to evaluate the load-bearing capacity and reliability of bridges over time by combining
the Monte Carlo simulation method with the nonlinear finite element calculation model. Used the
Monte Carlo simulation method combined with the nonlinear finite element calculation model
to evaluate the load-bearing capacity and reliability of bridges over time with a probabilistic de-
termination method. Liu et al. [6] established a method for assessing the remaining load-bearing
capacity of bridges over time, which considered non-stationary bridge load effects caused by
material degradation due to increasing traffic loads and random structural deterioration.

In the field of structural engineering, despite the widespread application of probabilistic
prediction and neural network-based resistance degradation models, there are still significant
issues such as the cumbersome iteration of model formulas, poor generality in model computa-
tions, the neural network’s limited consideration of influencing parameters, and the tendency
of BP networks to fall into local optima. Furthermore, stochastic resistance degradation
models for corroded Reinforced Concrete beams that account for both variable uncertainty and
model uncertainty are exceedingly rare. Therefore, there is an urgent need for an accurate and
straightforward method for predicting the bending capacity of corroded RC beams.

Compared to existing neural network approaches, Bayesian neural networks introduce
uncertainty into the neural network, specifically by dealing with the uncertainty of network
weights through regularization techniques [7]. Not only do they possess a high adaptability
and powerful data mining capabilities, but they also address the problems of traditional BP
neural networks, such as getting trapped in local minima, slow convergence rates, and poor
generalization ability. Chen et al. [8] utilized the unique self-learning capability and strong
generalization ability of Bayesian neural networks to predict the remaining service life of
concrete under tensile fatigue. However, the application of Bayesian neural networks that
consider both variable uncertainty and model uncertainty in the establishment of resistance
degradation models for corroded RC beam structures is still rarely reported. Juan et al. [9]
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employed a physically-guided Bayesian neural network, integrating approximate Bayesian
computation training with a physics-based model, to provide a novel and useful tool for the
rapid assessment of the load-bearing capacity of critical buildings post-earthquake.

In response to the issues present in the aforementioned studies, this paper aims to establish
a time-variant probability model for the flexural bearing capacity of corroded Reinforced
Concrete (RC) beams based on Bayesian neural networks, taking into account various
uncertainties that occur during the actual corrosion process of RC beams. Initially, the model
considers the corrosion of steel reinforcements to derive a degradation model for the flexural
bearing capacity of corroded RC beams. Subsequently, it analyzes the model uncertainty inherent
in existing prediction models, establishes a time-variant probability model for the bearing
capacity of corroded RC beams, and develops a time-variant prediction model using Bayesian
neural networks, which is then compared and analyzed with traditional Back Propagation
(BP) neural networks and Genetic Algorithm-optimized BP (GA-BP) neural networks. Finally,
the probability prediction model presented in this paper is validated using experimental data
from 38 corroded RC simply supported beams, and the time-variant probability distribution
of the flexural bearing capacity for corroded RC beams within a service life of 100 years is
determined based on relevant cases, providing a reference for engineering safety assessments.

2. Deterministic model for calculating the flexural load
capacity of corroded RC beams

2.1. Performance degradation model for corroded RC beams

2.1.1. Residual cross-sectional area of reinforced steel after corrosion
The primary cause of performance degradation in reinforced concrete structures is steel

reinforcement corrosion, which results in a reduction of the cross-sectional area of the steel.
The extent of this reduction is characterized by a time-related reinforcement cross-sectional
area loss rate 𝜂:

(2.1) 𝑆(𝑡) = (1 − 𝜂(𝑡))𝑆0

where: 𝑆(𝑡) – denotes the cross-sectional area of reinforced steel after corrosion, 𝑆0 – represents
the initial cross-sectional area of reinforced steel.

2.1.2. Post-corrosion steel reinforcement yield strength degradation model
As the loss rate of the steel reinforcement cross-sectional area accumulates, the mechanical

properties of the rebar undergo a fundamental transition from ductility to brittleness, with
severe degradation in yield strength [10]. The modeling of the decline in steel reinforcement
yield strength is as follows:

(2.2) 𝑓𝑦 (𝑡) = (1 − 𝑘1𝜂(𝑡)) 𝑓𝑦0

where: 𝑘1 – the empirical coefficient, 𝑓𝑦 (𝑡) – represents the yield strength of the corroded
reinforcement, 𝑓𝑦0 – represents the yield strength of the reinforcement before corrosion.
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2.1.3. Post-corrosion reinforcement and concrete bond strength degradation
The good bond between reinforcement and concrete is a prerequisite for the proper

functioning of reinforced concrete structures. In existing research both domestically and
internationally, scholars have reached a qualitative consensus on the rule of corrosion affecting
cohesive performance. They often use the collaboration coefficient between reinforcement and
concrete to reflect the impact of bond strength degradation on structural components. However
the bond strength is related to many factors, such as the diameter and surface shape of the steel
reinforcement, as well as the anchorage length. Since this paper mainly considers the decrease
in the load-bearing capacity of RC beams due to steel corrosion, it only considers the impact
of steel corrosion on bond strength. Therefore, this paper applies theBODY expression of the
collaborative working coefficient between corroded reinforcement and concrete, summarized
by Ma [11], to the calculation of the structures resistance of corroded RC beams.

(2.3) 𝑘2 =


1 𝜂(𝑡) < 1.2%
1.0168 − 0.014𝜂(𝑡) 1.2% ≤ 𝜂(𝑡) < 6%
0.72 + 0.295𝑒−0.0651𝜂 (𝑡 ) 6% ≤ 𝜂(𝑡) < 20%
0.8 𝜂 ≥ 20%

where: 𝜂(𝑡) – denotes the coefficient of corrosion, 𝑘2 – represents the collaborative coefficient
between the corroded reinforcement and concrete.

2.1.4. Corrosion-Induced bending capacity degradation model for RCBODY beams
Based on the aforementioned computational theory model, assuming the RC beam has

a solid concrete rectangular cross-section, the calculation model for the flexural bearing
capacity of a corroded RC beam is constructed as follows:

(2.4) 𝑀 (𝑡) = 𝑘2 𝑓𝑦 (𝑡)𝑆(𝑡)
[
ℎ0 −

𝑓𝑦 (𝑡)𝑆(𝑡)
2 𝑓𝑐𝑏

]
where: 𝑀 (𝑡) – represents the bending bearing capacity of the reinforced concrete beam normal
section, 𝑘2 – represents the coefficient of synergy between corroded reinforcement and concrete,
ℎ0 – represents the effective height of the RC beams cross-section, 𝑓𝑐 – denotes the compressive
strength of the concrete, 𝑏 – is the width of the cross-section.

As can be deduced from the above equation, the flexural bearing capacity 𝑀 of a corroded
reinforced concrete RC beam is composed of a series of factors including material strength,
cross-sectional dimensions, etc. Therefore, when analyzing the probabilistic characteristics
of 𝑀 , the random variability of these factors should be considered.

2.2. Limitations of deterministic flexural load capacity models

Based on the 200 sets of experimental data on the bending load capacity of corroded
RC beams taken from [12], the accuracy of the corrosion RC beam flexural load capacity
calculation model proposed in (2.4) is verified. The experimental information can be found in
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Table 1, and the comparison between the model calculated values (denoted as 𝑀 𝑗 ) and the
experimental test values (denoted as 𝑀𝑠) is displayed in Fig. 1. Difference between calculated
and tested flexural capacity and Fig. 2.

Table 1. Test beams geometrical data

Reference
Test beams

length
(mm)

Width
(mm)

Height
(mm)

Thickness
of

protective
layer (mm)

Tension bars Concrete
strength

[12] 1700 120 200 25 2×A14 C30

[13] 1500 150 200 25 2×B16,
2×D16

25.9 MPa,
35.6 MPa

[14] 2400 200 300 30 2×A18+1×A12,
2×A20+1×A12 C30

[15] 1800 150 240 25, 30, 35 2×A22 C25

[16] 2400 240 300 25, 30, 35
2×A18,
2×A20,
2×A22

34.55 MPa

[17] 1500 150 200 14

2×A16 (Stainless
steel

reinforcement
2204)

C55

[18] 1800 160 250 30 3×B16 C30

[19] 900, 3000,
1800 150, 152 150, 254,

200 30

2×B10,
2×B12,
2×B14,
2×B16

[22.13-49.04]
MPa

[20] / 120 200 25, 30, 35

2×A12,
2×A14,
2×A16,
2×A18

[21.01-30.03]
MPa,

[21] 1200 150 200 30 / 25.93 MPa, 35.55
MPa

[22] 2600 160 320 25 2×B20 49.8 MPa

As shown in Fig. 1 and Fig. 2, there is a significant deviation between the model calculated
values and the experimental values. Although the flexural load capacity model defined by (2.4)
takes into account the degradation effects of reinforcement corrosion on the yield strength 𝑓𝑦 , the
effective cross-sectional area 𝑆, and the bond strength between reinforcement and concrete 𝑘2,
thereby having a relatively solid theoretical foundation, this model is deterministic. It fails to
consider the uncertainties introduced by the experimental environment, as well as the objective
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Fig. 1. Difference between calculated and tested flexural capacity

Fig. 2. The relationship between model bias and corrosion rate

uncertainties related to the geometric dimensions of RC beams, material characteristics,
boundary conditions, among other factors. Additionally, subjective uncertainties arising from
incomplete consideration of factors or inappropriate choice of function forms during the model
derivation process also affect the results, leading to a certain degree of dispersion in the
calculation outcomes and an inability to describe the probability distribution characteristics of
the bending load capacity of corroded RC beams. Therefore, it is necessary to build a predictive
model for calculating the bending load capacity of corroded RC beams on the basis of the
deterministic model described in (2.4), by comprehensively considering the effects of both
objective and subjective uncertainties.
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3. Bayesian neural network time-variant prediction model for
flexural bearing capacity of corroded RC beams

3.1. Uncertainty of the prediction model
Considering the limitations of the aforementioned deterministic flexural bearing capacity

model, in order to represent the objective uncertainty present in factors such as the geometric
dimensions of RC beams, material properties, and boundary conditions, as well as the subjective
uncertainty arising during the model derivation process due to incomplete consideration of factors
or improper selection of functional forms, and the model uncertainty introduced by environmental
changes when indoor experiments simulate actual field conditions, this paper intends to use
a model bias coefficient, defined as the ratio between experimental values and calculated values.

(3.1) 𝑀𝑠 = 𝜀𝑀 𝑗

where: 𝑀𝑠 – represents the experimental values of the bearing capacity of the corroded
reinforced concrete beam, 𝑀 𝑗 – represents the calculated values of the bearing capacity of
the corroded reinforced concrete beam, 𝜀 – is the model bias coefficient, which represents
a multivariable function of factors such as the geometric dimensions of an RC beam, material
properties, and corrosion conditions.

From the above, a calculation model for the flexural bearing capacity of corroded RC
beams that considers uncertainty can be obtained, as shown in the following (3.2).

(3.2) 𝑀 (𝑡) = 𝜀𝑘2 𝑓𝑦 (𝑡)𝑆(𝑡)
[
ℎ0 −

𝑓𝑦 (𝑡)𝑆(𝑡)
2 𝑓𝑐𝑏

]
3.2. Determination and preprocessing of neural network data samples

To predict the bending bearing capacity of RC beams after corrosion, based on the analysis
of various parameters in (3.2), this paper selects 9 variables for the input layer, which include
the model calculation value (𝑀 𝑗 ), the initial yield strength of the reinforcement ( 𝑓𝑦0), the initial
cross-sectional area of the reinforcement (𝑆0), the compressive strength of the concrete ( 𝑓𝑐), the
thickness of the concrete protective layer (𝐶), the diameter of the reinforcement (𝐷), the height
of the RC beam section (ℎ), the width of the RC beam section (𝑏), and the corrosion rate (𝜂);
the output layer result is set to be the model bias coefficient (𝜀). Based on the experimental
data of the bending bearing capacity of 200 corroded RC beams [12], the sample data consisting
of input and output are divided into a training set and a test set in a 7:3 ratio. To meet the
training requirements of the neural network model, this paper uses the mapminmax function to
normalize the data to [0–1] to avoid affecting the accuracy of subsequent simulation predictions.

3.3. Setting parameters for Bayesian neural networks

To better demonstrate the feasibility and effectiveness of the Bayesian Neural Network
time-variant prediction model in predicting the bending bearing capacity of corroded RC
beams, this paper compares it with the traditional BP neural network prediction model and the
GA-BP neural network prediction model.
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3.3.1. Determination of hidden layer structure and neuron quantity
The hidden layer is the hierarchical structure between the input and output of the BP

neural network, and the learning mapping ability of the BP neural network can be enhanced
by changing the number of layers in the hidden layer. Furthermore, the number of neurons in
the hidden layer is another key point in determining the structure of the BP neural network,
but currently, there is no unified formula to determine the value. Too many or too few neurons
can ultimately affect the simulation prediction accuracy of the neural network. Due to the small
dataset in this paper, a random algorithm is used to obtain the optimal number of hidden layers
and neurons. The number of layers in the hidden layer is chosen to range from [1–3], and the
number of neurons in the hidden layer is chosen to range from [5–29]. The loss value uses
mean square error, which is calculated as (3.3). After a series of error comparisons, the optimal
parameters are determined to be when the mean square error is 0.0126, with two hidden layers,
respectively containing 17 and 9 neurons.

(3.3) 𝑀𝑆𝐸 =
1
𝑁

𝑁∑︁
𝑛=1

(𝑌 (𝑛) − 𝑌 (𝑛))2

where: 𝑌 (n) – denotes the actual value of the sample, 𝑌 (𝑛) – represents the predicted value of
the neural network, 𝑁 – is the number of the dataset.

At the same time, the same hidden layer structure is used to train the Bayesian neural network,
obtaining the loss value of 0.0046, which meets the requirements for optimal network parameters.

3.3.2. Selection of learning rate
The key to adjusting neural network weights and thresholds lies in determining the learning

rate. This paper uses 𝑘-fold cross-validation (𝑘 = 5) to determine the learning rate [23]. The
specific method is to divide the sample dataset into the training set and the test set at a ratio of
7:3, and then divide the training set into 5 cross-validation groups, taking each group in turn as
a validation set and the remaining four groups as a training set. The learning rate is optimized
according to the loss function results on the validation set. Fig. 3 shows the changes in the loss
values of the BP neural network on the validation set when the learning rates are set to 0.01,
0.005, 0.001, 0.0005, and 0.0001.

As can be seen from Fig. 3, as the number of training increases, the value of the loss
function decreases significantly, which indicates that the BP neural network can learn the
mapping relationship between the parameters of the corroded RC beam carrying capacity
degradation model and the bending bearing capacity well. However, when the learning rate is
set at 0.01, 0.005, 0.001, and 0.0005, not only does the loss function value decrease too quickly,
but there is also the possibility of falling into local optima or saddle points during training.
Therefore, this paper selects the relatively good descent rate of 0.0001 as the appropriate
learning rate. Fig. 4 shows the loss function of the Bayesian neural network on 5 validation
sets when the learning rate is set to 0.0001.

In the actual modeling process, the Bayesian neural network is built using MATLAB 2022a,
and the model parameters are shown in Table 2. Model setup To ensure the accuracy of the
experiment and the comparability of the results, a traditional BP neural network with the same
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Fig. 3. The effect of learning rate

Fig. 4. The loss value of Bayesian neural network when the learning rate is 0.0001

structure and a GA-optimized BP neural network are trained. The parameters of the genetic
algorithm are shown in Table, which considers the corrosion characteristics of reinforced
concrete beams and the simulation process.

3.4. Model prediction results and validation

The neural network, once trained, exhibits good generalization ability. The paper validates
the proposed Bayesian neural network prediction model based on the flexural bearing capacity
data of 38 corroded RC samples from [24]. The comparison results are shown in Fig. 5
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Table 2. Model setup

Loss
function

Optimization
algorithms

The number of
hidden layers

Hidden layer
dimension

Learning
rate

Maximum
number of

sessions

Target
accuracy

MSE Trainbr 2 17,9 0.0001 10000 0.00001

Table 3. Genetic algorithm parameters

Optimization
algorithms

Learning
rate

Target
accuracy

Population
size

The
number of
iterations

Crossover
probability

Mutation
probability

Traingdx 0.0001 0.00001 50 200 0.6 0.2

as follows. As shown in Fig. 5, the Bayesian Neural Network predicts the flexural bearing
capacity of corroded RC beams more accurately than the BP Neural Network. It is comparable
to the currently more practical GA-BP Neural Network prediction accuracy. The prediction
accuracy R2 of Bayesian Neural Network model is 0.904, the prediction accuracy R2 of
GA-BP Neural Network model is 0.885, while the BP Neural Network model has a prediction
accuracy R of 0.465.

Fig. 5. Model Accuracy Validation

To avoid the randomness of high precision in single neural network predictions, this paper
conducted a total of 200 predictions based on the basic parameters listed in the Tab. 1 and
Tab. 2, and the precision of the prediction results is depicted in Fig. 6. The prediction accuracy
is expressed by the correlation coefficient 𝑅2.
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Fig. 6. Comparative analysis of prediction accuracy

From Fig. 6, it can be observed that the predictions of the bending bearing capacity of the
corroded RC beams by the trained Bayesian neural network are more stable than those of the
BP neural network and the predictive performance is close to the more practical GA-BP neural
network currently in use. The average prediction accuracy of the Bayesian neural network is
85.44%, which is 7.44% higher than that of the BP neural network, thereby indicating a strong
correlation between the Bayesian neural network predictions and the experimental data.

4. Case analysis

Statistical data shown in Table 4 are used, which include domestic and international statistics
on the yield strength of corroded rebars 𝑓𝑦0, concrete compressive strength 𝑓𝑐, concrete cover
thickness 𝐶, and initial rebar diameter 𝐷.

Table 4. Statistics of input layer variables

Variable Distribution type Mean Variation Coefficient References

Initial yield strength
of the rebar 𝑓𝑦0

(MPa)

normal
distribution <380,412.3,528.43> <0.098,0.114,0.024> [25]

concrete compressive
strength 𝑓𝑐 (MPa)

normal
distribution <27.9,34.19,20.72> <0.17,0.027,0.177> [26]

concrete cover
thickness 𝐶 (mm)

normal
distribution <20,25,30,35> 0.05 [26]

initial rebar diameter
𝐷 (mm)

normal
distribution <14,16,18,20,22> 0.03 [26]
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The initial cross-sectional area 𝑆0 of the rebar is calculated with the diameter 𝐷, while the
section height ℎ, section width 𝑏, and the rebar cross-sectional area loss rate 𝜂 are determined
based on existing literature and experimental experience, with the parameter limits set as
follows: ℎ ranges from [150, 300], 𝑏 ranges from [100, 200], and the 𝜂 is taken from the
range [0, 80] as per Ma et al. [29] for reliability and lifespan assessment of RC bridges under
multi-source uncertainty information. Based on the aforementioned parameters distribution,
Latin Hypercube Sampling is used to sample 10000 times, and each input layer variable sample
is calculated. To obtain the mean and standard deviation of the probability distribution of
the flexural bearing capacity of corroded RC beams at different times, the trained Bayesian
Neural Network is used for multiple predictions. The mean and standard deviation coefficients
are calculated by dividing the prediction results by the initial flexural bearing capacity. The
corresponding resistance probability distribution curve is shown in Fig. 7. It is evident from
the figure that the log-normal distribution fits well, hence it can be inferred that the bending
bearing capacity 𝑀 follows a log-normal distribution. This provides a theoretical basis for the
safety and durability assessment of corroded RC structures.

Fig. 7. Fitting of probabilistic models of resistance

As can be seen from Fig. 8, after the initial corrosion time of 18 years, as the reinforcement
corrosion accumulates over time, the mean of the beam’s bending bearing capacity significantly
decreases. At the same time, the coefficient of standard deviation of bending bearing capacity
also shows a stable growth over time. This indicates that closer to the end of service life, the
fluctuation range of the component’s resistance becomes larger, which means that the beam is
very likely to fail towards the end of its service life and should therefore be monitored for safety.
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(a) (b)

Fig. 8. Time-varying curve of mean and standard deviation coefficient: (a) Mean coefficient; (b) Standard
deviation coefficient

5. Conclusions

1. By studying the actual macroscopic resistance deterioration characteristics of reinforced
concrete beams, the impact of model uncertainty on resistance prediction results was
analyzed, resulting in a probabilistic model for the bending bearing capacity of corroded
RC beams that conforms to a log-normal distribution. Based on this, a time-varying
predictive model of the bending bearing capacity of corroded RC beams was constructed
using Bayesian neural networks.

2. Compared to the traditional BP neural network in this paper, which requires hundreds
of iterations to converge, and the GA-BP neural network, which takes a long time
to converge, the time-varying predictive model of the bending bearing capacity of
corroded RC beams based on the Bayesian neural network converges in just a few dozen
iterations. It is the most efficient and results in high prediction accuracy. The ratio of
experimental values to predicted values has a mean of 0.96 and a variance of 0.175,
providing a low-cost and efficient method for evaluating the bending bearing capacity of
corroded RC beams.

3. Steel reinforcement corrosion plays a dominant role in the deterioration process of the
bending bearing capacity of beam components. Based on the probability model assumed
in this paper, by the end of the service period (the 100th year), the bending bearing capacity
of corroded RC beams is only 9% of the initial value, hence special attention should be
paid to the safety condition of corroded beam components in the final years of service life.
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