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Abstract: With the increasing attention of society to sustainable development and environmental friendly
design, building energy saving design has become a research hotspot. In this paper, a method combining
multi-objective optimization algorithm and neural network backpropagation strategy is proposed to solve the
problem that traditional design methods are difficult to balance multi-objective. By dividing the architectural
design problem into multiple sub-problems, each sub-problem corresponds to a design objective, and
applying multi-objective optimization technology, the global optimization is realized. The experimental
results show that the error of energy consumption prediction model is almost 0, while the error of daylighting
prediction model is between 0 and 5, and the average error is about 3. The correlation coefficients of all
models exceeded 0.9845, highlighting the excellent performance of neural networks in forecasting accuracy.
The BP neural network showed good convergence in 2800 to 3000 iterations, further demonstrating the high
efficiency of the method in energy consumption and daylighting prediction. The research not only provides
a scientific and feasible strategy for building energy efficiency optimization design, but also enhances its
scientific value and practicability through the display of quantitative results.
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1. Introduction

The problem of global energy consumption and environmental pollution is becoming
a global challenge. As one of the main areas of energy consumption, the importance of
energy-saving design is becoming more and more prominent in the building industry [1].
According to statistics, the energy consumed by buildings during their life cycle accounts for a
considerable part of the total energy consumption in the world, and has a significant impact on
the environment [2]. Therefore, building energy efficient design is not only related to energy
efficiency, but also directly affects the sustainability of the environment and the improvement
of human life quality [3]. However, the traditional architectural design methods often face
great challenges in the face of multi-objective and multi-variable optimization problems. These
goals may include energy efficiency, cost-effectiveness, indoor comfort, environmental impact,
etc., and they may conflict with each other, complicating finding the optimal solution during
the design process [4]. At present, the existing methods such as hybrid genetic algorithm,
improved ant colony optimization algorithm and distributed parallel genetic algorithm have
made some progress, but there are still some problems such as slow convergence and easy
local convergence [5]. On the other hand, multi-objective optimisation is a method to deal
with multi-objective problems, which decomposes a complex multi-objective problem into
several relatively simple sub-problems [6]. And training neural networks is usually done by
continuously adjusting the weights through back propagation algorithm to minimise the gap
between the network output and the actual objective [7].

As the global climate continues to change, the importance of energy efficient building
design is becoming more and more significant. Yue and Jia designed a three-dimensional model
of urban landscape based on Structure from motion algorithm and simulated the landscape
signals by autocorrelation function. The results show that the application value of different
categories of green building materials in urban 3D landscape design is different [8]. Andiyan
proposed a harmonious development between the main functions of office buildings and the
environment, aiming to analyse the building’s response to environmental issues under the
application of the green building concept. The results show that the green building concept
can continue to be used to solve the environmental problems of buildings [9]. Zhou et al.
selected a green office building in a city as an example, and obtained the indoor environmental
quality through on-site measurements, and obtained the user’s satisfaction with the building
through questionnaires. The experimental results show that the level of energy use in this green
office building is much less than the constraints of the national standard [10]. Almeida et al.
experts selected green and non-green buildings of the university with similar characteristics to
compare energy use and simulate the interactions between the occupants and the systems in the
building, with the aim of analysing the impact of occupants’ behaviour in terms of energy use.
The results of the study show that the occupants’ influence on the energy performance of the
building is about 72%, which can provide a reference for the design of green buildings [11].

On the other hand, multi-objective optimisation algorithms as a class of computational
methods for solving problems involving multiple conflicting objectives. Hamsaveni et al. have
proposed a multi-objective optimisation] algorithm aimed at solving the problem of wavelength
allocation and shortest path identification in WDM networks. The study is able to analyse the
optimal routing paths of the nodes as well as the available wavelengths at each moment in time,
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thus reducing the system burden [12]. Wang et al. proposed a multi-objective optimization
algorithm based on a multi-area division sampling strategy integrating a genetic algorithm and
a differential evolutionary algorithm to cope with the standard flexible job shop scheduling
problem. The results of the study show that the model and algorithm have achieved remarkable
results and have potential applications in solving other similar problems [13]. Anh et al.
propose an optimal energy management method for optimal thermoelectric hybrid isolated
microgrids using intelligent optimization techniques. Experimental results show that the
improved multi-objective particle swarm optimization algorithm has 1 better performance [14].
Chen et al. proposed a control optimization method based on multi-objective optimization
algorithm to solve the problem that it is difficult for existing control optimization methods to
take into account all performance indicators of three control systems at the same time. The
results show that the method is feasible and effective [15].

In summary, the current research on building energy efficiency has been greatly developed,
but at present there are still problems such as slow] convergence speed and easy local
convergence. In order to achieve a balance between multiple objectives in building design,
improve design efficiency and performance, while ensuring the optimal balance of energy
efficiency, environmental sustainability and user experience in buildings under different
climatic conditions, the study proposes a building energy efficiency design method based on
multi-objective optimisation algorithm. By decomposing the complex building design problem
into multiple sub-problems and applying the multi-objective optimisation technique to deal
with it, and introducing neural network back propagation to improve the efficiency of the
optimisation process. The innovation of this research is that the multi-objective optimisation
technique takes into account energy consumption, comfort and other indicators to achieve the
global optimal solution, and back propagation quickly approximates the objective function to
accelerate the convergence of the optimisation algorithm and improve the search efficiency.
This research is divided into four parts. The first part introduces the research background,
problems and solutions of building energy efficiency design optimisation. The second part
introduces the building energy-saving design optimisation method combining multi-objective
optimisation algorithm and neural network. The third part designs a comparative experiment for
performance testing of building energy-saving design optimisation. The fourth part summarises
the research method, analyses the experimental results, and puts forward the shortcomings and
outlook of the method.

2. Building energy efficiency optimization considering
multi-objective and PCNN

Energy-efficient optimal design of buildings based on multi-objective optimisation algo-
rithms aims to achieve the optimality of building systems considering multiple objectives such
as energy efficiency, indoor comfort and environmental impact. Through this approach, the
study is expected to find the set of Pareto optimal solutions under different design variables and
constraints, thus achieving a balance between energy efficiency, environmental sustainability
and user experience of the building.
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2.1. Building energy saving optimization design based on Pareto optimal
solution

Different climate regions around the world, such as tropical, temperate and cold zones,
have unique climate characteristics, including temperature fluctuations, precipitation patterns,
humidity levels and solar radiation intensity. These factors directly affect a building’s energy
needs, including heating, cooling, lighting and ventilation. To achieve this, the study combines
climate data analysis and building energy consumption simulations. Research took into account
factors such as building form, orientation, material selection and layout, which interact with
climate characteristics to determine the building’s energy efficiency [16]. This paper selects
an improved multi-objective particle swarm optimization (MOPSO) algorithm, which finds
Pareto optimal solution set by maintaining a group of particles to iteratively search in the
search space of multiple targets. Its general idea and technical process are shown in Fig. 1.
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Fig. 1. Overall idea and technical process of building energy efficiency optimisation design

In Fig. 1, the technical process includes the establishment of building energy consumption
model, the definition of design variables and constraints, the selection and application of
optimisation algorithms, as well as the final obtainment of the Pareto optimal solution set
based on multi-objective optimisation, which leads to the best balance in the case of multiple
objectives. Optimisation problems are divided into two categories: single-objective and multi-
objective. Single-objective problems have only one objective function and are usually common
in building energy efficiency design [17]. Multi-objective problems involve two or more
objective functions and are relatively difficult to solve because there are often conflicts between
different objectives [18]. Methods for solving multi-objective problems include the primary
objective method, the linear weighted sum method, and Pareto optimality. Among them, the
computational expression of linear weighted sum method is shown in Eq. (2.1) [19].

n
@2.1) ‘;2;}21 wi f; (%)
In Eq. (2.1), f;(x) and w; denote the objective function and its weight coefficients for the

i respectively, and X denotes the feasible space for optimisation. The number of objective
functions is denoted by n. On the other hand, for single-objective optimisation algorithms,
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their performance evaluation indexes are stability, effectiveness, speed, coverage, robustness
and convergence. The method of evaluating the robustness of an algorithm is to change the
parameters several times, record the optimal solutions under different settings, and calculate the
standard deviation of their objective function values. The smaller standard deviation indicates
the better robustness of the algorithm, the specific calculation is shown in Eq. (2.2) [20].

fi

(Y
P

i=1

(2.2) Rob =
n

In Eq. (2.2), Rob denotes the metrics for evaluating the robustness of the algorithm, the
value of the objective function of the optimal solution found by the algorithm in the first i
run is denoted by f;, and n denotes the total number of runs. Convergence is the accuracy of
the optimisation algorithm in approaching the optimal solution. The evaluation method is to
determine the convergence stage of the algorithm and calculate the standard deviation of the
objective function value of the solution at that stage, the formula is shown in Eq. (2.3) [21].

P 2
! L fi

Z Zt;b _fi
2.3) con=\Z

t—b+1

In Eq. (2.3), CON denotes the metric for evaluating the convergence of the optimisation
algorithm, ¢ denotes the number of all solutions searched in the optimisation run, and the
solution searched at b is the optimal solution searched by the optimisation. The effectiveness
of a multi-objective optimisation algorithm is assessed by considering the Pareto optimal set
generated and the time cost required [22]. In order to eliminate the unit differences between
different optimal design objectives, each objective vector of the Pareto solution is first converted
to a normalised value using the maximum-minimum normalisation method, and then the
values of each evaluation metric are calculated based on these normalised values, which are
standardly calculated as shown in Eq. (2.4) [23].

2.4) Fi = 30 S

L J J
max f min

In Eq. 2.4), F l] denotes the normalised value of the j objective corresponding to the i
solution, and fl.j denotes the actual value of the j objective corresponding to the i solution.
fnj;ax denotes the actual maximum value of the j-th objective obtained by the algorithm in the
optimisation process, and f’ rfl ., denotes the actual minimum value of the j-th objective obtained
by the algorithm in the optimisation process. In studying the optimal design of buildings
for energy efficiency, in addition to evaluating the algorithm efficacy, special attention needs
to be paid to the potential failure scenarios. In a given optimisation problem, if the optimal
solution obtained by an algorithm is sufficient to meet the user’s accuracy requirements, it can
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be considered as a satisfactory solution. The quality of the optimal solution can be measured
by calculating the relative difference in the objective function value between it and the true
optimal solution, which is given in Eq. (2.5) [24].
(2.5) 5= =TT 100%

f*

In Eq. (2.5), f” and f* represent the objective function value of the optimal solution
obtained by the algorithm and the objective function value of the real optimal solution,
respectively. Successful optimisation run means that the algorithm finds a satisfactory solution
in a finite time, and the success rate is the ratio of the number of successful runs of the algorithm
in multiple runs to the total number of runs, which is calculated as shown in Eq. (2.6) [25].
(2.6) B= Nsucoess x 100%

Nan

In Eq. (2.6), Ny denotes the total number of optimisation runs, while Ng,ccess denotes
the number of successful optimisation runs among them. To study the use of the analytical
method to calculate the energy consumption of a building, a physical calculation model that can
accurately reflect the actual working condition of the building is first determined. In this regard,
a physical calculation model based on EnergyPlus was chosen as the theoretical basis for the
analytical method [26]. The total energy consumption of the building at a certain moment
tQau,r can be basically calculated as the sum of the energy consumption of the HVAC system,
lighting, electrical equipment, and other related energy consumption, the specific expression
of which is shown in Eq. (2.7) [27].

2.7 Qall,t = sts,t + Qlights,t + Qequip,t + Qothers,t

In Eq. (2.7), QOsys,r» Qlights,t» Qequip,: and Qequip,: represent the energy consumption of
HVAC equipment, lighting equipment, appliance-related energy and other related energy,
respectively. In recent years, neural networks have made significant progress in multi-objective
optimisation of building performance. By utilising deep learning techniques, the complex
non-linear relationships of building systems can be effectively captured. Combined with multi-
objective optimisation algorithms, the ability of neural networks to synergistically optimise
building energy consumption, comfort and other multifaceted objectives has been enhanced.
Therefore, the study proposes a multi-objective optimisation method for building performance
based on neural networks, and Fig. 2 demonstrates the research framework of the method.

In Fig. 2, the study firstly needs to perform the determination of performance objectives,
then the design of parameter space, followed by parameter and performance mapping, and
then the selection of tools and platforms. Generally traditional performance mapping usually
uses simulation methods with high accuracy. The neural network mapping method is used
for performance evaluation by inputting the building design parameter data and obtaining the
evaluation results through the mathematical operation of the neural network model [28]. The
model is trained based on the data set obtained from research or simulation, and can be reused
after the training is completed, and the performance evaluation results are quickly obtained
through simple operations, and the specific performance mapping comparison is shown in Fig. 3.
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Fig. 2. Research framework of multi-objective optimisation method of building performance based on
neural network
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Fig. 3. Comparison of core steps of performance mapping methods

In Fig. 3, there is a clear difference between the traditional performance mapping approach
and the neural network approach in terms of the core steps. The traditional approach relies
heavily on simulation techniques to obtain a performance assessment through refined modelling
and numerical calculations.

2.2. Multi-objective optimization design based on BPNN

In order to improve the efficiency of the optimization process, backpropagation neural
network (BPNN) is introduced. Through iterative training, the network can predict building
performance quickly and accurately [29]. Meanwhile, in order to reveal the correlation between
form and performance, designers are able to adjust building features more accurately to meet
various requirements and goals and to improve the overall performance of the building, the
training of the mapping model of building form and performance is crucial. In the study,
the process is accomplished through neural network training, utilizing the corresponding
morphology and performance datasets. The training consists of three steps: structure design,
dataset generation and training validation [30]. In BPNN, tansig (hyperbolic tangent S-type) and
Purelin (linear) are two commonly used transfer functions. tansig function is usually used in the
hidden layer, and its output ranges between [—1, 1], which has the property of nonlinearity, which
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is helpful for the network to learn the complex nonlinear relationship [31,32]. Whereas Purelin
function is usually used in the output layer and its output is directly equal to the input, which is
very suitable for linear mapping, especially in regression problems. In this case, the mathematical
expression for the net input value of the BPNN at the j-th neuron is shown in Eq. (2.8) [33].

x
(2.8) SJ':ZWy['X[+bj=WjX+bJ'
i=1

In Eq. (2.8), x; denotes the input of the neuron in the input layer, b; denotes the threshold
value, and the connection weights of the j neuron in the latter layer to the i neuron in the
former layer are tabulated by w;; S ; denotes the net input. The study further obtains the output
of y;, which is the output of the j-th neuron, through the excitation function, which is given
in Eq. (2.9) [34].

(2.9 yj:f(Sj):f(ZWyi'xi+bj):f(WjX"'by)
i=1

In Eq. (2.9), f(-) denotes the hull function. Backpropagation (BP) network learning is a
backpropagation algorithm that allows the neural network to continuously adjust the connection
weights to adapt to the mapping relationship between inputs and outputs. In training, the
network calculates the error between the output and the target through forward propagation,
and then gradually adjusts the weights to minimize the error through backpropagation [35].
Fig. 4 shows the BP neural network learning process, i.e., the network topology diagram.
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Fig. 4. Topology of BP neural network

In Fig. 4, the BPNN algorithm consists of two stages: forward propagation and back
propagation. In forward propagation, the input data passes through the neuron network,
generating the output and calculating the error by comparing it with the actual target. In backward
propagation, the error is propagated backwards through the network, and the connection weights
are adjusted by gradient descent to gradually learn the mapping relationship between the input
and the output, and continuously iteratively optimize the network performance. In forward
ship, the input expression of the j-th node of the hidden layer is shown in Eq. (2.10) [36].

X

(2.10) inputj: Z UjiXi +Y;
i=1
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In Eq. (2.10), x; denotes the input value of the input layer, y; denotes the deviation value
of the implied layer, and u;; denotes the connection weights between the nodes of the input
and implied layers. The expression of the output value of the j-th node of the implied layer is
shown in Eq. (2.11) [37].

2.11) out; = f(input,) = f (Z ujl-x,-+yj)

i=1

In Eq. (2.11), out; denotes the output value of the j node of the implicit layer. The input of
the k-th node of the output layer is shown in Eq. (2.12) [38].

q 1 n
(2.12) inputk:kajCj+bk:kajf(Zuﬁxi+yj)+bk

Jj=1 Jj=1 i=1

In Eq. (2.12), f(x) denotes the transfer function of the implicit layer, v4; denotes the
weights between the nodes of the implicit layer and the nodes of the output layer, and
by denotes the threshold value of the nodes of the output layer; where i = 1,2,3,...,n,
j=1,2,3,...,9,k=1,2,3,...,m. The output value of the k-th node of the output layer is
shown in Eq. (2.13) [39].

M»Q

q
(213) Ok =g (inputy) =g[ > vi;C;+ by | =
j=1 =1

Vk/f (Z UjiX; + aj) + bk

=1

In Eq. (2.13), g(x) denotes the transfer function (output layer) and Oy denotes the output
of the output layer node. a; denotes the deviation value of the hidden function. The standard
algorithm for network weight adjustment is based on the error gradient descent method. First,
the specific calculation in Eq. (2.14) is used by calculating the error table between the desired
output and the actual output of each sample [40].

L
1
2.14 L A

In Eq. (2.14), T}, denotes the desired output. From this, the global error is calculated in
Eq. (2.15) [41].

1 P L
(2.15) E=3) > (@ -0

Through multiple rounds of cycling, the study continuously adjusted parameters such as the
learning rate so that the backpropagation network gradually converged to achieve the desired
training goal.
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3. Performance verification of building energy efficiency
multi-objective optimization algorithm

This study focuses on the impact of building morphological changes on space loading using
a morphological parametric dataset containing 200 sets of data obtained from a parametrically
constrained monolithic space by mF version 2023 software and Latin hypercube sampling
method. The performance target datasets corresponding to the evaluation results of morpholog-
ical parameters and daylighting and energy performance are obtained by Ladybug+Honeybee
version 2023 simulation tool on Grasshopper platform. The simulation method is used to gain in-
sight into the effects of building morphological changes on daylighting and energy performance,
and a neural network prediction model is constructed using the Matlab R2021a toolbox.

3.1. Optimization analysis of building energy efficiency for climate change

Fig. 5 shows the mean square error of the energy consumption and daylighting prediction
models for typical climate regions such as Shanghai, Beijing, Harbin, Guangzhou and Kunming.
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Fig. 5. Mean square error of neural network in typical climatic regions; (a) Energy consumption, (b)
Daylighting

In Fig. 5, Fig. 5a shows the mean square error of the energy consumption prediction model
for a typical climate region, and it can be observed that the energy consumption prediction
model mean square error is low, basically close to 0. Fig. 5b shows the mean square error
of the daylighting prediction model for a typical climate region. It can be observed that the
lighting prediction model mean square error, the minimum is 0, the maximum is not more than
5, and the average is around 3. Fig. 6 illustrates the evolution of the size of the Pareto solution
set per generation for different climate zones.

According to Fig. 6a, the number of optimal solutions in Harbin varies greatly at about
31 and 36 generations of optimization, and the number of optimal solutions gradually tends
to stabilize after about 31 generations of optimization. According to Fig. 6b, the maximum
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Fig. 6. Each represents the number of optimal solutions in each generation of the city; (a) Number of
optimal solutions per generation in Harbin and Beijing, (b) Number of optimal solutions per generation
in Shanghai, Kunming and Guangzhou

number of optimal solutions in Shanghai is 180, and the number of optimal solutions gradually
tends to be stable after about 31 generations of optimization. To verify the optimization effect,
the study conducted comparative experiments focusing on energy consumption and lighting
performance. Ten samples from each of the entire parameter space and the Pareto solution set
were selected for performance comparison. Through the statistical analysis of the sampling and
performance data of feasible solutions in different climate zones, the performance improvement
in Beijing and Shanghai climate zones was derived, see Fig. 7.
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Fig. 7. Improved lighting and energy performance; (a) Energy consumption in Beijing, (b) Beijing
daylighting, (c) Energy consumption in Shanghai, (d) Shanghai daylighting
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According to Fig. 7a, in Beijing energy consumption, the pareto solution is around 170,
while the general solution is as low as 175 and as high as 183. According to Fig. 7b, in Beijing
light harvesting, the pareto solution is around —75, while the general solution is as low as
about —175 and as high as about —20. According to Fig. 7c, in Shanghai energy consumption,
the pareto solution is around 127. According to Fig. 7d, the pareto solution is around —77 in
Shanghai daylighting. After the multi-objective optimization, the energy consumption and
daylighting performance of the building are significantly improved.

3.2. Performance analysis of building energy efficiency optimization based
on BPNN

In order to compare the performance of the method used in the study with other methods,
the study further uses generative adversarial network, convolutional neural network to do
comparison with the experimentally proposed BPNN to record the convergence changes, the
results are shown in Fig. 8.
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Fig. 8. Comparison of convergence results; (a) Convergence curve of BPNN network and GAN network,
(b) Convergence curve of BPNN network and GAN network

In Fig. 8a, BPNN starts to show a convergence trend at about 3000 iterations, while
convolutional neural network needs close to 6000 iterations before it starts to converge
smoothly. In Figure 8b, the BPNN has shown good stability at about 2800 iterations, compared
to about 4500 iterations needed to generate adversarial networks to achieve a similar stable
state. This shows that BPNN not only converges quickly during training, but also reaches a
stable solution earlier, which is a significant advantage for application scenarios that require fast
prediction and optimization calculations. The study further analyses the error decline rates of the
original BP network and the optimized network (denoted as GA-BP below). Fig. 9 illustrates the
comparison of the error drop rate results for the original BP network and the GA-BP network.

According to the comparison results of Fig. 9a and Fig. 9b, it is obvious that there are
significant differences in the number of iterations when the two networks reach the target value.
It takes 100 iterations for BPNN to reach the target value for the first time, while the optimized
GA assisted BP network shows a faster convergence rate, reaching the target value after only
51 iterations.



www.czasopisma.pan.pl P N www.journals.pan.pl

=
~—

ANALYSIS OF BUILDING ENERGY EFFICIENCY OPTIMIZATION DESIGN EFFECTIVENESS. .. 45

o - ______._
10 ! 10° —— Train

—— Validation
Test

—— - Best

—— - Goal

Train
Validation

o

Value
Value

reduction

reduction

|
|
|
I
|
|

Large error |
|
|
I [
|

|
|
I
|
|
|
|
Large error }
|
|
|
|
|
|

10°

|
|
|
|
|
0 20 40 60 80 100 0 20 40 60 80 100

100 Epochs 51 Epochs
(a) (b)

Fig. 9. Error decline rate results of the original BP network and optimised GA_BP network; (a) BP neural
network error reduction diagram, (b) Optimized BP network error reduction diagram

4. Conclusions

In the current era of growing concern about climate change and resource scarcity, the
building industry bears a huge responsibility for energy consumption and environmental
impact. To cope with this challenge, building energy efficiency has become a crucial aspect in
design and construction. Based on this, the study proposes an optimal design of buildings for
energy efficiency based on a multi-objective optimisation algorithm and analyses its potential
in improving design effectiveness. The results show that the multi-objective optimization
method can achieve high accuracy of energy consumption prediction model in typical climate
regions, and the error is close to zero, while the average value of daylighting prediction model
is controlled within 3, although there are some errors. The correlation coefficient of neural
network training is higher than 0.9845, showing excellent prediction accuracy. BP neural
network showed good convergence in 2800 to 3000 iterations, demonstrating the efficient
performance of the method in energy consumption and daylighting prediction. Through the
comparison experiment, the optimization effect of this method in energy consumption and
daylighting performance is remarkable, which is superior to the traditional method and other
existing algorithms. The modified optimization method is suitable for building design in
different climate regions, and can adapt to the uncertainties brought by global climate change,
providing flexible and adjustable solutions for building energy conservation design. Although
the methods in this study perform well in several aspects, there is still room for improvement.
For example, the algorithm parameters are further optimized to improve the application
efficiency of the algorithm on larger scale problems. Consider combining the methods of
this study with other advanced technologies, such as machine learning, big data analysis,
etc., to explore deeper optimization strategies for building energy efficiency. It is expected
that the findings of this study will stimulate more research on building energy efficiency
and environmental adaptive design, and jointly promote the development of the construction
industry in a more efficient and environmentally friendly direction.
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