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Abstract: In construction project management, it is crucial to consider multiple objectives, such as duration
and cost, to develop an optimal plan. This paper established a multi-objective optimization model, taking into
account the construction period, cost, safety, and quality of projects. A genetic algorithm (GA) was selected
as the solution method, and the non-dominated sorting genetic algorithm-II (NSGA-II) was optimized by
cat mapping, adaptive crossover, and mutation operators to obtain an improved algorithm for the model
solution. Experiments were conducted to evaluate the performance of the designed algorithm. It was found
that the improved NSGA-II exhibited superior convergence and diversity when applied to the test functions
ZDT1-ZDT3. The mean construction period obtained from the model solution was 124 days, with a cost
of 1,204,782 euros. The quality and safety levels achieved were 0.93 and 0.95, respectively, which were
significantly better than those obtained by the NSGA-II. These findings demonstrate the reliability of the
improved NSGA-II developed in this paper, suggesting its practical applicability.
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1. Introduction

As the economy rapidly develops, the construction industry has also developed and
made significant contributions to social stability and employment promotion. However,
it also faces increasing competitive pressures and new challenges, particularly in project
management. Currently, project management methods in the construction industry are relatively
singular, lacking comprehensive cost and quality control considerations. Consequently, project
management efficiency remains low, impeding enterprises’ ability to maximize their interests.
Multi-objective optimization in project management involves considering various objectives
holistically to make better decisions and achieve greater efficiency and effectiveness. This falls
under multi-objective optimization problems (MOP) [1]. As intelligent algorithms continue
to advance, an increasing number of methods are being applied to address MOP [2]. For
instance, Liu et al. [3] proposed a two-stage multi-objective optimization algorithm for the
delivery problem of takeaway riders. This algorithm combined a genetic algorithm (GA) with
a large-scale domain search algorithm and demonstrated its reliability through simulation
experiments. Zhang [4] focused on the intelligent adjustment of train operation schedules
and designed a multi-objective optimization model based on passenger satisfaction. This
model was solved using a chaotic firefly algorithm, and its effectiveness was proven through
simulation. Erol et al. [5] designed a material optimization model for multilayer self-driven
parts, employing a GA for its solution and obtaining feasible designs. Furthermore, Yuen et
al. [6] proposed an optimized particle swarm optimization algorithm based on the competitive
mechanism. Through experiments on 37 benchmark test problems, they demonstrated the
effectiveness of this algorithm for solving MOP. Some research has been conducted on
construction project management issues. Hargaden et al. [7] analyzed the role of blockchain
technology in construction project management and explored applications of decentralization,
peer-to-peer principles, and smart contracts. They pointed out that blockchain technology can
significantly improve process efficiency in the construction industry. Mukilan et al. [8] designed
an improved particle swarm optimization algorithm to optimize engineering project claim
management with the objective functions of project time and cost. Experimental results showed
that this algorithm could minimize project costs and time to a maximum extent. Sembiring
et al. [9] utilized critical chain project management for scheduling construction projects and
discovered through case studies that this approach enables the effective arrangement of project
timelines to attain optimal progress. Kannimuthu et al. [10] examined the advantages and
disadvantages of single-objective and multi-objective methods in architectural construction
planning and concluded from three actual case studies that the single-objective approach is
capable of determining superior solutions. GA has good robustness in solving optimization
problems [11] and has been successfully applied in parameter optimization [12] and engineering
management [13]. However, traditional GA lacks flexibility, and obtaining ideal results for
some complex problems is difficult. Therefore, various improvements to traditional GA have
emerged [14]. The non-dominated sorting genetic algorithm (NSGA) introduces non-dominated
sorting into GA to highlight excellent individuals [15], while NSGA-II is an improved version
of NSGA to achieve better convergence and distribution, showing better performance in solving
MOP [16]. In this paper, a multi-objective optimization model was established based on the
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project’s duration, cost, safety, and quality. An improved GA was designed to solve this model.
The aim is to provide reliable references for optimizing construction project management
in practical applications. The research in this article demonstrates the effectiveness of the
improved NSGA-II in MOP and provides some theoretical support for considering more
objectives in optimizing construction project management.

2. A multi-objective optimization model for construction
project management

2.1. Multi-objective optimization problem

In most MOPs, it is generally not feasible to achieve an optimal solution that simultaneously
meets all objectives. The outcomes obtained from solving MOP are called Pareto optimal
solutions [17]. These solutions form a set where at least one objective is optimally satisfied,
and the other objectives are also satisfied to varying degrees. Suppose that an MOP can be
described by functions:

(2.1)


min 𝐹 (𝑥) = { 𝑓1 (𝑥), 𝑓2 (𝑥), . . . , 𝑓𝑚 (𝑥)}
𝑠.𝑡.𝑔 𝑗 (𝑥) ≤ 0, 𝑗 = 1, 2, . . . , 𝑝
ℎ𝑘 (𝑥) = 0, 𝑘 = 1, 2, . . . , 𝑞

,

where: 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ 𝑋 ⊂ 𝑅𝑛 (𝑋: a 𝑛-dimensional decision space), referring to
a 𝑛-dimensional decision vector, 𝑓1 (𝑥), 𝑓2 (𝑥), . . . , 𝑓𝑚 (𝑥) – optimization objectives, 𝑔 𝑗 (𝑥) – 𝑝

inequality constraints, ℎ𝑘 (𝑥) – 𝑞 equality constraints.
A solution 𝑥 ∈ 𝑋 is usually referred to as a Pareto optimal solution or a non-dominated

solution, when and only when ¬∃𝑥′ ∈ 𝑋 : 𝑥 ≺ 𝑥′.
There are two main approaches to solving MOP. One is to decompose the multiple objectives

into single objective models, prioritize different objectives, determine the main objective, and
search for the optimal solution. However, this method has significant limitations and often
fails to achieve optimal decision-making results. The other is to directly solve the MOP using
intelligent algorithms such as GA and particle swarm optimization [18]. These algorithms can
simultaneously solve the optimization of multiple objectives and are widely used in various
applications such as path selection [19] and process optimization [20].

2.2. Multi-objective optimization modeling

In construction project management, the objectives often considered are schedule, cost,
and quality. In this paper, in addition to these three objectives, the safety objective is also
considered, and the explanation of each objective is as follows.

1. Construction period: it refers to the duration from the start of construction to the
acceptance of the project. It is an important indicator to determine whether the project
is completed. It is assumed that all processes can only be started after the immediate
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predecessor activities have been completed, and the process can not be interrupted. The
objective of the construction objective is written as:

min𝑇 =
∑︁
𝑖∈𝐼

𝑡𝑖 ,(2.2)

𝑠.𝑡.𝑡𝑠𝑖 ≤ 𝑡𝑖 ≤ 𝑡𝑙𝑖 ,(2.3)

where: 𝑇 – the total construction period, 𝐼 is the set of processes, 𝑡𝑖 – the actual
construction time of process 𝑖, 𝑡𝑠𝑖 – the shortest construction time of process 𝑖, 𝑡𝑙𝑖 – the
longest time of process 𝑖.

2. Cost: it is directly related to project’s profitability. The goal is to minimize the cost
inputs without affecting other objectives. The cost objective is written as:

(2.4) min𝐶 =

𝑛∑︁
𝑖=1

[
𝐶𝑖 + 𝛽𝑖 (𝑡𝑖 − 𝑡𝑖𝑛)2] + 𝛾𝑇𝑐

where: 𝐶 – the total cost, 𝐶𝑖 – the direct cost of process 𝑖, 𝛽𝑖 – the incremental marginal
cost factor, 𝑡𝑖𝑛 – the normal duration time of process 𝑖, 𝛾 – the indirect cost, and 𝑇𝑐 – the
total construction period of the project.

3. Quality: each process in the construction project has the corresponding quality require-
ments. The quality level must be strictly controlled. 0-1 is used to indicate the quality
level of each process. It is assumed that the quality under the longest operating time
of the process is 1, and the quality gradually decreases as the construction period is
compressed. The quality level of process 𝑖 is written as:

𝑄𝑖 = ln (𝑎𝑖𝑡𝑖 + 𝑏𝑖) ,(2.5)

𝑎𝑖 =
𝑒 − 𝑒𝑞𝑖𝐼

𝑡𝑙𝑖 − 𝑡𝑠𝑖
,(2.6)

𝑏𝑖 =
𝑒𝑞𝑖𝐼 × 𝑡𝑙𝑖 − 𝑒 × 𝑡𝑠𝑖

𝑡𝑙𝑖 − 𝑡𝑠𝑖
,(2.7)

where: 𝑒 – a natural constant, 𝑞𝑖𝐼 – the minimum quality requirement of process 𝑖.
In actual construction projects, the final total quality will be affected by the previous
processes. It is assumed that the immediate predecessor activities of process 𝑖 include
𝑗1 𝑗1, · · · 𝑗𝑚, then

(2.8) 𝑄out
𝑖 =

1 −
𝑛∏
𝑗=1

(
1 −𝑄out

𝑗

) ×𝑄𝑖 .

The quality level of the whole project is written as:

(2.9) 𝑄 = 𝑄out
𝑛 =

[
1 −

𝑛∏
𝑖=1

(
1 −𝑄out

𝑖

) ]
×𝑄𝑛.
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4. Safety: Safety in construction projects encompasses not only the safety of each process
within the construction process but also financial and logistical safety, which poses great
complexities. To minimize the occurrence of safety incidents, companies will input
safety assurance costs during project implementation. Direct safety costs are incurred
to ensure production safety, whereas indirect safety costs are compensation expenses
resulting from safety accidents. Assuming that process 𝑖 has a safety accident occurrence
rate of 𝑝𝑖 , then its safety level can be written as:

𝑆𝑖 = 1 − 𝑝𝑖 = 1 − 𝑝𝑖0 (1 − Δ𝑝𝑖) ,(2.10)

Δ𝑝𝑖 = Δ𝑝𝑖min +
(Δ𝑝𝑖max − Δ𝑝𝑖min)

(
𝑐𝑖𝑔 − 𝑐𝑖𝑔𝑙

)
𝑐𝑖𝑔ℎ − 𝑐𝑖𝑔𝑙

,(2.11)

where: 𝑝𝑖0 – the initial incidence of safety accidents in process 𝑖, Δ𝑝𝑖 – the rate of
reduction in the incidence of safety accidents after investing in security assurance costs,
Δ𝑝𝑖max, Δ𝑝𝑖min – the maximum and minimum rates of reduction in the incidence of
security accidents after investing in security assurance costs, 𝑐𝑖𝑔 – the safety assurance
cost input in process 𝑖, 𝑐𝑖𝑔ℎ, 𝑐𝑖𝑔𝑙 – the maximum and minimum values of the safety
assurance cost input in process 𝑖.

In actual construction projects, the final level of total safety is similarly affected by
immediate predecessor activities. Assuming that the immediate predecessor activities of
process 𝑖 include 𝑗1 𝑗1, · · · 𝑗𝑚, then the safety level of this process is written as:

(2.12) 𝑆out
𝑖 =

1 −
𝑛∏
𝑗=1

(
1 − 𝑆out

𝑗

) × 𝑆𝑖 .

The level of security for the entire project is written as:

(2.13) 𝑆 = 𝑆out
𝑛 =

[
1 −

𝑛∏
𝑖=1

(
1 − 𝑆out

𝑖

) ]
× 𝑆𝑛.

Combining the above objectives, the final multi-objective optimization model of construc-
tion project management established in this paper is:

min𝑇 =
∑︁
𝑖∈𝐼

𝑡𝑖

min𝐶 =

𝑛∑︁
𝑖=1

[
𝐶𝑖 + 𝛽𝑖 (𝑡𝑖 − 𝑡𝑖𝑛)2] + 𝛾𝑇𝑐

max𝑄 =

[
1 −

𝑛∏
𝑖=1

(
1 −𝑄out

𝑖

) ]
×𝑄𝑛

max 𝑆 =

[
1 −

𝑛∏
𝑖=1

(
1 − 𝑆out

𝑖

) ]
× 𝑆𝑛

(2.14)

𝑠𝑡. 𝑡𝑠𝑖 ≤ 𝑡𝑖 ≤ 𝑡𝑙𝑖 , 0 < 𝑄𝑖 ≤ 1, 0 < 𝑆𝑖 ≤ 1(2.15)
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3. Improved genetic algorithm solution
The GA performs well in both single-objective and multi-objective optimization problem-

solving [21]. NSGA-II, built upon GA, stands out for its exceptional performance in addressing
MOP [22]. In this paper, the NSGA-II algorithm is also employed to solve the multi-objective
optimization model for construction project management, and its steps are as follows.

1. The population is initialized, and the algorithm parameters are set.
2. The initial population is subjected to fast, non-dominated sorting, and the first generation

of sub-populations is obtained after crossover and mutation.
3. The offspring and parent populations are merged to create a new population.
4. The new population obtained is subjected to fast, non-dominated sorting. The crowding

degree is computed, and appropriate individuals are chosen to constitute a fresh parent
population.

5. The above steps are repeated until the termination condition is met.
A few key elements in NSGA-II are listed below.
1. Fast non-dominated sorting

Suppose there is population 𝑃 with size 𝑁 and the objective dimension is 𝑚. All
individuals are traversed, and 𝑛𝑖 of each individual is calculated (𝑛𝑖 indicates the number
of individuals in the population dominate individual 𝑖). Individuals with 𝑛𝑖 = 0 are stored
in non-dominated layer 𝐹1. All individuals in 𝐹1 are traversed, and 𝑆 𝑗 , the individuals
dominated by individual 𝑖, is calculated.
Then, all individuals in 𝑆 𝑗 are traversed. For any individual 𝑘 , 𝑛𝑘 = 𝑛𝑘 − 1 is executed.
If 𝑛𝑘 − 1 = 0, 𝑛𝑘 belongs to the next non-dominated layer.
The above operations are repeated until all individuals are sorted.

2. Calculations of crowding degree
For individual 𝑖, its crowding distance is calculated by:

(3.1) 𝑖distance =

𝑚∑︁
𝑗=1

𝑓 𝑖+1
𝑗

− 𝑓 𝑖−1
𝑗

𝑓 max
𝑗

− 𝑓 min
𝑗

,

where: 𝑓 𝑖+1
𝑗

, 𝑓 𝑖−1
𝑗

– the function values of points 𝑖 + 1 and 𝑖 − 1 on objective function 𝑗 ,
𝑓 max
𝑗

, 𝑓 min
𝑗

– the maximum and minimum values of objective function 𝑗 .
3. Elitism strategy

The 𝑖-th population generation, i.e., 𝑃𝑖 is regarded as the parent population. Sub-
population 𝑄𝑖 is obtained after crossover and mutation. They are merged to generate
a new population. Then, the individuals in the population are screened according to the
results of the fast, non-dominated sorting and crowding degree until the scale of the new
population is 𝑁 .

To further enhance the diversity and convergence of the algorithm, the NSGA-II is improved
in the following two aspects.

1. The population is initialized based on cat mapping, which is an invertible chaotic
mapping that has good traversal uniformity and iteration speed [23]:

𝑥𝑛+1 = (𝑥𝑛 + 𝑎𝑦𝑛) (mod 𝑁) ,(3.2)
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𝑦𝑛+1 = [𝑏𝑥𝑛 + (𝑎𝑏 + 1) 𝑦𝑛] (mod 𝑁) ,(3.3)

where: 𝑎, 𝑏, 𝑁 – positive integers.
2. To enhance the optimization, adaptive crossover and mutation operators are used:

𝑝𝑐 (𝑖) = min 𝑝𝑐 + (max 𝑝𝑐 − min 𝑝𝑐) ×
𝑖

gen
,(3.4)

𝑝𝑚 (𝑖) = min 𝑝𝑚 + (max 𝑝𝑚 − min 𝑝𝑚) ×
𝑖

gen
,(3.5)

where: 𝑖 – the current number of generations, 𝑔𝑒𝑛 – the maximum number of generations,
max 𝑝𝑐, min 𝑝𝑐 – the upper and lower limits of the crossover probability, with values
of [0.4, 0.8], max 𝑝𝑚, min 𝑝𝑚 – the upper and lower limits of the mutation probability,
with values of [0.001,0.01]. The operation process of adaptive crossover and mutation
operator is as follows. 𝑝𝑐 (𝑖) and 𝑝𝑚 (𝑖) are calculated using the above equations. After
determining the positions of genes for crossover and mutation, random numbers are
generated and compared with 𝑝𝑐 (𝑖) and 𝑝𝑚 (𝑖). If they are smaller than 𝑝𝑐 (𝑖) and
𝑝𝑚 (𝑖), crossover and mutation operations are performed.

4. Results and analysis

4.1. Experimental environment and project overview

The experiment was conducted on a Windows 10 system with an Intel(R) Core(TM)i7-
10750H 2.6 GHz central processing unit and 16 GB of random access memory. An experiment
was conducted using a construction project as an example. Twelve processes were included, as
shown in Table 1. The construction period, total cost, quality level, and safety level requirements
for this project were no more than 140 days, within 1,261,900 euros, at least 0.8, and at least 0.9.
Additionally, the indirect cost per day was estimated at 315.475 euros. The specific parameters
for each process are shown in Table 2.

Table 1. Specific processes

Process Content
Immediate successor activity

(the subsequent process
following a procedure)

A Excavation of foundation pit

B Blinding layer D

C Base plate

D Main part

Continued on next page
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Table 1 – Continued from previous page

Process Content
Immediate successor activity

(the subsequent process
following a procedure)

E Waterproofing H, I, J, K

F Backfill

G Rough decoration

H Doors and windows installation

I Pipeline installation

J Embedded part

K Slotting and piping

L Completion

Note: 𝑡𝑠𝑖 : the shortest construction time of process 𝑖, 𝑡𝑖𝑛: the normal duration
time of process 𝑖; 𝑡𝑙𝑖 : the longest time of process 𝑖; 𝐶𝑖 : the direct cost of process
𝑖, 𝛽𝑖 : incremental marginal cost factor; 𝑞𝑖𝐼 : the minimum quality requirement
of process 𝑖; 𝑝𝑖0: the initial incidence of safety accidents in process 𝑖; Δ𝑝𝑖min,
Δ𝑝𝑖max: the minimum and maximum rates of reduction in the incidence of
safety accidents after investing in security assurance costs.

Table 2. Parameters of each process in this construction project

Process tsi tin tli Ci 𝜷i qi pi0 𝚫pin 𝚫pimax

A 12 20 22 13.93 3.12 0.78 0.20 0.08 0.90

B 10 15 20 1.28 3.03 0.82 0.10 0.05 0.85

C 15 18 25 12.94 2.37 0.82 0.08 0.02 0.85

D 20 26 40 52.04 2.78 0.84 0.01 0.02 0.85

E 8 12 15 1.09 2.02 0.80 0.08 0.02 0.80

F 8 13 15 12.17 2.35 0.85 0.15 0.05 0.88

G 5 8 10 0.65 3.21 0.85 0.15 0.08 0.85

H 5 8 10 0.17 1.25 0.88 0.05 0.02 0.80

I 8 13 15 4.43 3.24 0.82 0.10 0.12 0.90

J 5 7 9 0.04 2.87 0.78 0.15 0.12 0.85

K 5 7 8 0.04 2.12 0.78 0.10 0.12 0.85

L 2 2 3 0.06 1.33 0.88 0.05 0.02 0.90
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4.2. Improved NSGA-II performance analysis

The performance of the optimized NSGA-II was tested on the multi-objective test functions
ZDT1-ZDT3, which are as follows:

1. ZDT1 function 

𝑓1 (𝑥) = 𝑥1

𝑓2 (𝑥) = 𝑔

(
1 −

√︂
𝑓1
𝑔

)
𝑔(𝑥) = 1 + 9

𝑚∑︁
𝑖=2

𝑥𝑖/(𝑛 − 1)

(4.1)

𝑥1 ∈ [0, 1] ≤ 𝑥𝑖 ≤ 1, 𝑖 = 1, 2, . . . , 𝑛(4.2)

𝐹 = ( 𝑓1 (𝑥), 𝑓2 (𝑥)) . The minimum values of 𝑓1 (𝑥) and 𝑓2 (𝑥) were calculated.
2. ZDT2 function 

𝑓1 (𝑥) = 𝑥1
𝑓2 (𝑥) = 𝑔

[
1 − ( 𝑓1/𝑔)2]

𝑔(𝑥) = 1 + 9
𝑚∑︁
𝑖=2

𝑥𝑖/(𝑛 − 1)
(4.3)

𝑥1 ∈ [0, 1] ≤ 𝑥𝑖 ≤ 1, 𝑖 = 1, 2, . . . , 𝑛(4.4)

𝐹 = ( 𝑓1 (𝑥), 𝑓2 (𝑥)). The minimum values of 𝑓1 (𝑥) and 𝑓2 (𝑥) were calculated.
3. ZDT3 function 

𝑓1 (𝑥) = 𝑥1

𝑓2 (𝑥) = 𝑔(𝑥)
[
1 − 𝑓1 (𝑥)

𝑔(𝑥) − 𝑓1 (𝑥)
𝑔(𝑥) sin (10𝜋𝑥1)

]
𝑔(𝑥) = 1 + 9

𝑚∑︁
𝑖=2

𝑥𝑖/(𝑛 − 1)
(4.5)

𝑥1 ∈ [0, 1] ≤ 𝑥𝑖 ≤ 1, 𝑖 = 1, 2, . . . , 𝑛(4.6)

𝐹 = ( 𝑓1 (𝑥), 𝑓2 (𝑥)). The minimum values of 𝑓1 (𝑥) and 𝑓2 (𝑥) were calculated.
The convergence and diversity was compared between the NSGA-II and the improved

NSGA-II after setting the population size, the maximum number of iterations, and independent
running times of the NSGA-II as 100, 250, and 30 [24]. The obtained results are presented in
Table 3.

It was seen from Table 3 that the improved NSGA-II exhibited significantly enhanced
convergence and diversity compared to the NSGA-II on the ZDT1-ZDT3 test functions, i.e., it
could generate more stable and reliable results on multi-objective test functions. These findings
validate the effectiveness of the enhancement for NSGA-II. The improvement can enable the
algorithm to consistently find a more evenly distributed and reliable Pareto solution set.
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Table 3. Results of comparison of convergence and diversity

ZDT1 ZDT2 ZDT3

NSGA-II
Convergence

Mean value 3.36E-01 6.14E-01 5.56E-02

Standard deviation 9.41E-02 8.78E-02 1.28E-02

Diversity
Mean value 6.52E-01 8.50E-01 7.55E-01

Standard deviation 5.55E-02 1.64E-01 4.05E-02

Improved NSGA-II
Convergence

Mean value 9.92E-04 7.87E-04 4.71E-03

Standard deviation 1.91E-04 4.98E-05 2.35E-04

Diversity
Mean value 5.05E-01 5.05E-01 6.12E-01

Standard deviation 3.85E-02 3.50E-02 2.45E-02

Note: Mean value: 𝑥 = (𝑥1 + 𝑥2 + · · · + 𝑥𝑛)/𝑛);

Standard deviation: 𝜎 =

√︄
(𝑥1 − 𝑥)2 + (𝑥2 − 𝑥)2 + · · · + (𝑥𝑛 − 𝑥)2

𝑛
;

𝑛: Number of samples.

4.3. Analysis of multi-objective solution results

The multi-objective model of construction project management was solved using the
NSGA-II and improved NSGA-II. The population size was 100, and the maximum number of
iterations was 500. Some of the solutions are presented in Table 4.

A comparison was made between the results obtained from the NSGA-II and the improved
NSGA-II. The mean construction period, cost, quality level, and safety level achieved by the
NSGA-II were 128 days, 1,219,800 euros, 0.88, and 0.92, respectively. On the other hand, the
improved NSGA-II achieved a mean construction period of 124 days, resulting in a reduction of
four days compared to the NSGA-II. Additionally, the cost was reduced by 1.23% to 1,204,782
euros compared to the NSGA-II. Moreover, the quality and safety levels were increased to
0.93 and 0.95, respectively, which were improved by 0.05 and 0.03 compared to the NSGA-II.
These findings demonstrated that the solution obtained by the improved NSGA-II yielded
better results when tackling the multi-objective model of construction project management.

A detailed analysis of the improved NSGA-II solution reveals a strong relationship between
the various objectives in construction project management. When aiming for a short construction
period, the project’s cost tends to increase while the levels of quality and safety may decrease.
A long construction period can lead to reduced project costs and improved quality and safety
levels to some extent. Moreover, if the project prioritizes high-quality deliverables and the
prevention of safety incidents, the project’s construction period will likely be extended, resulting
in increased costs. The Pareto solution set obtained through the improved NSGA-II solution
offers various options catering to different optimization objectives. Decision-makers can select
the most suitable solution based on the specific requirements of the construction project. For
instance, Solution 1 may be chosen for execution when prioritizing the shortest construction
period, while Solution 2 can be selected when seeking the lowest cost.
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Table 4. Partial solutions of the model

Solution
NSGA-II Improved NSGA-II

Construction
period/day Cost/euro Quality Safety Construction

period/day Cost/euro Quality Safety

1 120 1,224,140 0.85 0.90 118 1,211,712 0.87 0.92

2 127 1,198,900 0.90 0.90 125 1,192,684 0.92 0.95

3 130 1,236,760 0.87 0.92 128 1,193,852 0.97 0.97

4 128 1,224,140 0.88 0.92 127 1,196,471 0.97 0.96

5 127 1,243,070 0.90 0.92 125 1,198,900 0.95 0.95

6 128 1,230,645 0.89 0.93 125 1,201,519 0.96 0.95

7 127 1,211,712 0.85 0.93 125 1,202,686 0.95 0.94

8 130 1,218,023 0.92 0.92 124 1,211,712 0.95 0.95

9 130 1,211,712 0.90 0.92 124 1,201,519 0.94 0.95

10 137 1,198,900 0.85 0.95 119 1,236,760 0.86 0.97

Mean
value 128 1,219,800 0.88 0.92 124 1,204,782 0.93 0.95

5. Conclusions
In this paper, an improved NSGA-II was proposed to address the multi-objective model

of construction project management. Through experimental analysis, it was found that the
improved NSGA-II performed better than the NSGA-II in terms of convergence and diversity.
Moreover, the solutions obtained through the improved NSGA-II exhibited higher quality. In
actual construction projects, the improved NSGA-II can provide optimal solutions based on
specific requirements, providing some theoretical support for decision-makers.
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