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Intelligent building construction site safety inspection model
based on YOLOX

Hairong Huang1, Lian Yuan2, Huiji Wang3, Haoran Yuan4

Abstract: The construction industry is a high-risk and high accident rate industry, and it is crucial to conduct
safety inspections on construction sites. Therefore, the study introduces an improved YOLOX algorithm and
performs lightweight processing such as replacing the backbone network and pruning channels. At the same
time, the optimized YOLOX algorithm will be applied to the construction of a model for safety detection in
intelligent building construction sites. Results showed that the improved model proposed in the study had the
best inference speed and average accuracy, with an average accuracy of 95.01%. In the experimental analysis
under different detection categories, the model proposed in the study had the highest detection accuracy for
whether to wear a safety helmet, with an accuracy rate of 96.39%, which was 10.05% higher than the YOLOX
model. At the same time, the accuracy of the model in detecting whether to wear welding masks, masks, and
welding gloves was as high as 92.37%, 94.49%, and 94.61%, respectively. In addition, the recall rate of the
model proposed by the research institute in helmet wearing detection was as high as 95.48%. The improved
model proposed by the research institute has performed well in safety inspection of construction sites, not
only possessing high-speed processing capabilities but also high-precision detection performance, providing
reliable technical support for real-time monitoring and early warning of intelligent building construction.
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1. Introduction
The safety inspection of intelligent building construction sites has always been an important

and challenging issue. As is well known, construction site workers have poor safety awareness,
high mobility, and low overall quality [1]. In terms of construction safety, with the development
of new technologies, it has become possible to automatically identify hidden dangers on
construction sites. There are currently two main methods, one is recognition based on wearable
technology. This method mainly adopts functions such as positioning, monitoring, alarm, and
reminder. But this method requires construction workers to wear additional equipment on their
own, which is somewhat cumbersome for construction workers themselves. The second method
is based on computer vision technology, which does not have the aforementioned limitations.
As computer vision and deep learning technology develop, intelligent security detection models
using image recognition have become a new solution [2]. Traditional intelligent security
detection models based on rules or features overly rely on rule and feature extraction, and
may be affected by factors such as lighting, angle, occlusion, etc., resulting in a decrease in
detection accuracy [3, 4]. In response to this type of problem, an improved YOLOX algorithm
is introduced to design and implement an intelligent building construction site safety detection
model to improve the safety and work efficiency of the construction site. The contribution of the
research is the introduction of an improved YOLOX algorithm that has undergone lightweight
processing. This model helps to accurately identify and locate various safety hazards in
construction sites, and is expected to provide an efficient and accurate safety detection solution
for the construction industry.

The research content includes four parts. The first part provides a review of the YOLOX
algorithm and construction safety detection. The second part introduces the construction of
an intelligent building construction site safety detection model using the improved YOLOX
algorithm. The third part conducts experimental analysis on the application of the algorithm
and model proposed in the research. The fourth part summarizes and discusses the experimental
results, and proposes future prospects.

2. Related works
YOLOX is an accurate and real-time object detection model, with improved algorithms

widely used in computer vision. SONG et al. proposed the SEYOLOX-tiny model to accurately
and robustly detect the male ears of corn in the field. This network model optimized the
YOLOX model by embedding attention mechanisms. The results indicated that the model fully
met the accuracy and robustness requirements of the visual system for detecting corn tassels [5].
Guo et al. proposed the YOLOX-SAR algorithm to address the scattering characteristics. The
experimental results showed an excellent performance and explanatory power in SAR image
target detection, with mAP reaching 89.56% and maintaining real-time detection speed [6].
Zhang et al. found that there were omissions and errors in the detection of prohibited items, so
they introduced a detection framework based on the state-of-the-art YOLOX object detection
network. The results showed that the average accuracy of this method on the public safety
SIXray dataset was improved by 5.0% compared to the benchmark YOLOX-S model [7].
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Construction safety inspection is significant for the safety of people’s lives and property,
and improving the quality of engineering. De Melo and Costa proposed a new method that
utilizes elastic engineering concepts and drone system technology. The results showed that this
method helped to improve the safety conditions of construction sites [8]. Li et al. proposed
a phased inspection plan to explore the safety inspection of drones on construction sites. The
results showed that drones had significant potential advantages in construction site safety
inspections [9]. Akinolu et al. used a two-step literature selection method and bibliometric
review to compile relevant publications from the Scopus database on safety issues related to
construction sites. Analysis showed that the emerging trends in research on building health
and safety technologies were concentrated in areas such as project health [10].

In summary, many researchers have conducted extensive research on the safety detection
of construction sites, but have not applied advanced object detection technologies. Therefore,
an improved YOLOX model is introduced in the study to achieve more efficient and accurate
object detection in construction site safety inspection.

3. Intelligent building construction site safety detection
model using YOLOX object detection algorithm

For the safety inspection of intelligent building construction sites, this chapter first
introduces the construction process of a safety inspection model, and application investigation
of safety hazards. Subsequently, for the selection of target detection algorithms in the third
stage, an improved YOLOX algorithm is introduced, and the backbone network is replaced
and channel pruning is performed to achieve the lightweight of the model.

3.1. Construction of a safety inspection model for intelligent building
construction sites

The construction of an intelligent building construction site safety detection model is
mainly divided into four stages, including safety hazard data collection, dataset production,
model training and evaluation, and application investigation of safety hazards. In the stage
of collecting safety hazard data, it covers three main steps, including creating a hazard list,
arranging equipment, and collecting data [11]. The production stage of the dataset mainly
consists of two stages: data annotation and construction. In the annotation process, research
mainly uses manual methods to annotate the collected image data for security risks, and
the quality of annotation will directly affect the recognition effect of subsequent models.
In the process of constructing a dataset, the research focuses on the production of datasets
for hidden dangers listed in the subsystem areas of each engineering system. The framework
diagram of the data collection and production stage is shown in Fig. 1.

The third stage is the training and evaluation of safety detection models for intelligent
building construction sites. The core tasks of this stage include selecting a suitable deep learning
framework, building a model training environment, and selecting suitable object detection
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Fig. 1. Frame diagram of the data acquisition and production stage

algorithms. This stage belongs to the core link of the model and is also a prerequisite for
achieving safety detection on construction sites. The fourth stage is the application investigation
of safety hazards, which mainly includes three stages: debugging of equipment and operating
environment, intelligent security detection model for video input, and intelligent detection of
safety hazards. When safety hazards are discovered through the intelligent building construction
site safety inspectionmodel at the construction site, the model will immediately issue a reminder
to the on-site workers, urging them to rectify in a timely manner. At the same time, a facial
recognition system will be launched to identify and record the identities of workers at the
construction site. Finally, the testing results will be included in the monthly safety assessment
and safety education will be provided to relevant personnel. The framework diagram of the
safety detection model for intelligent building construction sites, as well as the application and
investigation of safety hazards, is shown in Fig. 2.

Fig. 2. Framework diagram for the training and evaluation phase and application troubleshooting phase
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In the safety detection model of intelligent building construction sites, the performance
and layout method of collection equipment have a significant impact on the quality of collected
image data. As the basic equipment for image data collection, the performance and usage
of cameras are particularly important in construction sites. Due to the complex and dusty
environment of construction sites, the quality of images captured by cameras will directly
affect the accuracy of the model in identifying safety hazards. Therefore, to ensure the accuracy
and stability of safety inspections on construction sites, objective evaluation of camera image
quality is studied to test its performance and various indicators. The specific evaluation content
includes indicators such as camera resolution, color reproduction, dynamic range, distortion
correction, and clarity, to ensure that the camera can collect high-quality image data in the
construction site and provide a reliable basis for safety hazard inspection. When collecting
data for training, research mainly places cameras in multiple positions to collect data from
different angles, and simultaneously analyzes the occlusion situation at different positions.
In addition, for the production of datasets, research is conducted on capturing image data from
construction sites and capturing monitoring images of construction sites to obtain the required
safety hazard image data.

3.2. Intelligent building construction site safety detection based on
improved YOLOX model

In the training and evaluation of safety detection models for intelligent building construction
sites, there are many difficulties in safety detection, including the complex construction en-
vironment and the presence of obstacles. In response to this type of problem, an improved
YOLOX model is introduced, which combines the Bilateral Attention Module (BiCAM)
and Residual Feature Pyramid Network (Res-FPN) to enhance its performance in safety
detection tasks at construction sites. The traditional Convolutional Block Attention Module
(CBAM), after learning, can obtain attention weights for channels and spaces. Although
this method can obtain contextual information of local regions, it is too focused on feature
information, resulting in the loss of edge information of densely detected targets [12]. To
address this issue, BiCAM is introduced in the study, and the schematic diagram of this
module is shown Fig. 3.

Fig. 3. BiCAM module schematic diagram
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In BiCAM, the input feature map needs to be first fed into the Channel Attention Module
(CAM) for processing, in order to obtain CAM weights. Subsequently, the input features
are multiplied by this weight to obtain a feature map containing channel weights, which are
calculated as shown in Equation (3.1).

(3.1) MC = M ⊗ NC

In Equation (3.1), M represents the input feature and NC represents the weight of CAM.
Subsequently, the study feeds the feature maps containing channel weights into the Spatial
Attention Module (SAM) for processing to obtain the weights of the SAM. Simultaneously
the original input feature map is multiplied with this weight to achieve the focus of the target
position, and the calculation is shown in Equation (3.2).

(3.2) MS = M ⊗ NS

In Equation (3.2), NS represents the weight of SAM. Next, the study will add and operate
feature maps containing channels and spatial weights to further integrate features from both
spatial and channel dimensions. Finally, the sigmoid function is used to calculate the matrix
based on channel space attention weights, as shown in Equation (3.3).

(3.3) MCS = σ(MC ⊕ NS)

In Equation (3.3), σ(·) represents the sigmoid function. The weight information represents
the contribution of channels or spaces in the feature map to the final output, which helps the
model obtain richer semantic information in specific regions, thereby improving detection per-
formance. Additionally, in the feature extraction module, to overcome the network degradation
and gradient vanishing, the research draws on the idea of residual connection and proposed the
Res-FPN structure [13]. The improved YOLOX model has improved the recognition accuracy
of dense and occluded targets to some extent, but it has problems such as large scale, too many
parameters, and insufficient inference speed. Therefore, a series of lightweight optimization
measures are proposed in the study, resulting in the YOLOX-M3 model. Firstly, the study
replaces the backbone network of the YOLOXmodel with MobileNetv3, which is a lightweight
neural network that can perform fast inference on mobile and embedded devices without the
support of GPU [14]. In this network, the computational cost of the convolutional kernel on
a certain fully convolutional layer is calculated as shown in Equation (3.4).

(3.4) Cosfull = DF × DF × A × B

In Equation (3.4), Cosfull represents the computational cost of the convolutional kernel
on the entire convolutional layer. DF × DF represents the size of the input feature. A and B
represents the number of input and output channels, respectively. The calculation cost of point
by point convolution is shown in Equation (3.5).

(3.5) Cos1×1 = DF × DF × A × B
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In Equation (3.5), Cos1×1 represents the computational cost of point by point convolution.
The cost of deep separable convolution calculation is shown in Equation (3.6).

(3.6) Cosall = DF × DF × A × DK × DK + DF × DF × A × B

In Equation (3.6), Cosall represents the computational cost of depthwise separable convo-
lution. DK × DK represents the size of the convolution kernel. The ratio of the calculation cost
of deep separable convolution to standard convolution is calculated in Equation (3.7).

(3.7)
Cosall
Cosfull

=
1

D2
K

+
1
B

To achieve compression and acceleration of the model, a channel pruning strategy is further
introduced in the study. At the same time, approve the data and use the scaling factor of the
batch standardization layer as the pruning parameter [15]. The specific steps are to first set up
a dataset {X1, X2, . . . , Xm}, and the mean calculation of this dataset is shown in Equation (3.8).

(3.8) µm =

m∑
i=1

Xm

m

The variance calculation of this data is shown in Equation (3.9).

(3.9) σ2
m =

m∑
i=1
(Xi − µm)

2

m

Subsequently, the mean and variance are normalized, and the calculation is shown in
Equation (3.10).

(3.10) X̂i =
Xi − µm√
σ2
m + ε

In Equation (3.10), ε is a parameter close to 0, with the aim of avoiding a denominator
of 0. According to X̂i , the output result can be obtained, and its calculation is shown in
Equation (3.11).

(3.11) Yi = βX̂i + γ

In Equation (3.11), β and γ respectively represent the translation factor and scaling factor.
Next, γ will be applied to each channel and sorted by size, compared to the preset threshold.
Crop the corresponding channels below the threshold and perform repeated fine-tuning training.
The calculation of training results is shown in Equation (3.12).

(3.12) L =
∑
(X,Y)

l( f (X,W),Y ) + λ
∑
γ∈Γ

g(γ)
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In Equation (3.12), l( f (X,W),Y ) represents the original loss function of the network, g(γ)
represents the penalty term of γ, λ represents the sparse factor, and Γ represents the set of scaling
factors. The study removes the connection between the front and back of the channel through
channel pruning, and selects the channel through scaling factors. At the same time, the regulariza-
tion term of the scaling factor is added to the original loss function for joint training to optimize
the network. Assuming the channel pruning threshold is set to 0.5, 50% of the channels will be
pruned and the complete model structure will be ensured, without affecting the dimensionality
matching of the backbone network. Fig. 4 shows the schematic diagram of channel pruning.

Fig. 4. Schematic diagram of channel pruning

4. Safety inspection model analysis for intelligent building
construction site based on YOLOX

This chapter first analyzed the performance of the YOLOX-M3 model. Subsequently, the
practical application effect of the YOLOX-M3 based intelligent building construction site
safety detection model was verified, and the detection performance of different models in
four safety hazards of not wearing welding masks, masks, welding gloves, and safety helmets
correctly was compared.

4.1. Performance analysis of YOLOX-M3 model

The study first verified the lightweight effect of different pruning rates on the YOLOX-M3
model, setting pruning rates of 30%, 50%, and 70%, respectively. Among them, a pruning
rate of 30% indicates that 30% of the original model parameters were retained during the
pruning process, and the remaining 70% of the parameters were pruned. The dataset used
in the experiment is the open-source dataset Safety Helmet Wearing Dataset (SHWD) for
helmet wearing detection. The images in SHWD are mainly searched through web crawlers
and networks, covering different scenes, visual ranges, lighting, personal poses, and occlusion
situations. There are a total of 7581 images, including 9044 positive samples with helmets and
111514 negative samples without helmets. When training the YOLOX-M3 model, research
pruning the model parameters based on the set pruning rate. Then, use the pruned model to
train on the training set to adjust the pruned model parameters to adapt to the pruned structure.
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Finally, use the test set to evaluate the detection performance and lightweighting effect of the
model under different pruning rates, in order to select the optimal pruning rate. At the same
time, inference speed and Average Precision (AP) were selected as performance evaluation
indicators. To ensure the results effectiveness, 10 tests were conducted and the average value
was taken as the final result. The performance evaluation results under different pruning rates
are shown in Fig. 5. The inference speed of the model increased as pruning rate increased.
When the pruning rate is 70%, the average inference speed of the YOLOX-M3 model reaches
89 FPS. At the same time, it can be seen that the AP value of the model decreases with the
increase of pruning rate. Among them, when the pruning rate is 30%, the average AP value of
the YOLOX-M3 model is as high as 96.13%. Taking into account various indicators, the study
ultimately selected 50% as the pruning rate of the mode.

Fig. 5. Performance evaluation results at different pruning rates; (a) Reasoning speed under different
pruning rates, (b) AP values under different pruning rates

The study continued to validate the lightweight effect of YOLOX-M3, and two mainstream
models, YOLOv4 and YOLOv5s, were selected for comparative analysis. The performance
indicators of different models are shown in Fig. 6. The YOLOX-M3 model had significantly
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better indicators than other models. Among them, the YOLOX-M3model had a reasoning speed
of up to 83 FPS, which was improved by 35 FPS and 23 FPS compared to the other two
models, respectively. Meanwhile, the AP value of the YOLOX-M3 model was as high
as 95.01%, while the AP values of the YOLOv4 and YOLOv5s models were only 88.14%
and 92.39%. The YOLOX-M3 model maintained high detection accuracy while also having
faster inference speed.

Fig. 6. Results of the performance indicators for the different models; (a) Reasoning speed of different
models, (b) AP values for different models

4.2. Application analysis of safety inspection model for intelligent
building construction site

To verify the practical application effect of the safety detection model for intelligent
building construction sites, this study took electric welding operations in building construction
as an example to detect four safety hazards of construction workers who did not wear welding
masks, masks, welding gloves, and safety helmets correctly. The intelligent identification of
hidden dangers consists of two stages. The first stage is the training and testing of the intelligent
identification model for hidden dangers. The second stage is to use the model trained in the
first stage to conduct intelligent inspection experiments on hidden dangers in steel structure
engineering scenarios. The collected data comes from smartphones, online channels, and
on-site cameras. After completing data collection, the study divided the experimental data
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into 5618 training sets, 701 testing sets, and 724 validation sets. The data collection for the
study belongs to descriptive statistics, which considers the diversity of data sources, real-time
characteristics, diversity conditions, as well as the partitioning and utilization of the dataset.

Table 1. Experimental environment and parameter setting

Entry name Parameter
CPU AMD Ryzen 7 5800X
Memory FURY32G
Video card GeForce RTX 2080Ti
Solid State Disk 1T
Operating system windows10
Programming language python3.7
Training Platform PyTorch

The study first validated the performance advantages of the YOLOX-M3 model under
different Intersection over Union (IoU) conditions. Faster Region based Convolutional Networks
(Faster R-CNN) model, Single Shot MultiBox Detector (SSD) model, and YOLOX model
were selected for performance comparison. The evaluation indicators include accuracy and
recall. The test samples are 701 test sets from the welding operation. The results of various
indicators under different categories are shown in Fig. 7. From Fig. 7(a), it can be seen that the
YOLOX-M3 model has significantly better security detection accuracy for various categories
than the YOLOX model, Faster R-CNN model, and SSD model. Among them, the YOLOX-M3
model has the highest detection accuracy for whether to wear a safety helmet, with an accuracy
rate of 96.39%. Compared with the YOLOX model, R-CNN model, and Faster SSD model,
it has improved by 10.05%, 18.95%, and 14.58%, respectively. Meanwhile, the YOLOX-M3
model has detection accuracies of 92.37%, 94.49%, and 94.61% for whether to wear welding
masks, masks, and welding gloves, respectively. As shown in Fig. 7(b), the recall rate of the
YOLOX-M3 model in helmet wearing detection is as high as 95.48%. The YOLOX-M3 model
has better security detection performance than other models in various detection categories,
and it has significant detection performance advantages.

To ensure the objectivity of the experimental results, the study further collected safety
inspection data from other construction sites online, including 50 sets of test data. This includes
inspection data for the welding area and assembly area. Among them, the welding area is
specifically used for welding operations, usually including welding equipment, workbenches,
and related materials. Construction personnel conducting welding operations here need to wear
welding masks, masks, welding gloves, and safety helmets to protect themselves from sparks
and smoke. The assembly area is a place for assembling building materials and components,
where construction personnel carry out assembly and installation work. In this area, construction
workers also need to wear safety helmets and gloves to protect themselves from accidental
injuries. The study used on-site safety inspection and video surveillance security inspection
and research method for comparison. The study summarizes the response speed measured
by each method and takes the average value for comparison. The experimental results are
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Fig. 7. Results of various indicators under different categories; (a) Accuracy of each model under different
categories, (b) Results of various indicators under different categories

shown in Table 2. From Table 2, it can be seen that the YOLOX-M3 model has a significantly
faster response speed in construction safety inspection compared to on-site safety inspections
and video surveillance inspections. Among them, the average inspection time for the welding
area during on-site safety inspections is as high as 29.68 minutes, which is an increase of
20.76 minutes compared to the YOLOX-M3 model. Meanwhile, in the safety inspection of the
assembly area, the average detection time of the YOLOX-M3 model is only 9.25 minutes. The
YOLOX-M3 model has significant advantages.

Table 2. Average response times for the different methods

Inspection methods
Mean response time/minute
Welding area Assembly area

On site safety inspection 29.68 31.84
Video monitoring 19.82 22.58
Model inspection 8.92 9.25
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5. Conclusions
The safety inspection of intelligent building construction sites is significant for improving

construction safety, achieving informationization and modernization of building construction,
and other aspects. The research mainly builds a safety detection model for intelligent building
construction sites based on the improved YOLOX-M3 algorithm. Results showed that the
inference speed of the model increases with the increase of pruning rate. When the pruning
rate is 70%, the average inference speed of the YOLOX-M3 model reaches 89FPS. When the
pruning rate is 30%, the average AP value of the YOLOX-M3 model is as high as 96.13%. The
inference speed of the model increased as pruning rate increased, but the AP value decreased as
pruning rate increased. The study ultimately selected 50% as the pruning rate of the model, with
a reasoning speed and AP value of 85FPS and 94.86%, respectively. In addition, the average
inspection time for the welding area during on-site safety inspections is as high as 29.68minutes,
which is an increase of 20.76 minutes compared to the YOLOX-M3 model. Meanwhile, in the
safety inspection of the assembly area, the average detection time of the YOLOX-M3 model
is only 9.25 minutes. The intelligent building construction site safety detection model based on
YOLOX-M3 algorithm performed well in terms of inference speed, target detection accuracy,
and safety evaluation accuracy. However, in the lightweight processing of YOLOX algorithm,
pruning technology may slightly reduce the detection accuracy of the model. Subsequent
research can consider introducing optimization processes such as knowledge distillation and
quantization to further improve the inference speed of the model while maintaining high
detection accuracy.
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[15] J. Bęc, “Influence of anchoring and bracing system on dynamic characteristics of façade scaffolding”, Archives
of Civil Engineering, vol. 69, no. 4, pp. 493–506, 2023, doi: 10.24425/ace.2023.147672

Received: 2024-04-09, Revised: 2024-06-19

https://doi.org/10.1108/ECAM-04-2021-0312
https://doi.org/10.1080/15623599.2020.1819584
https://doi.org/10.9798/KOSHAM.2020.20.1.119
https://doi.org/10.16511/j.cnki.qhdxxb.2019.26.008
https://doi.org/10.1109/JSEN.2022.3181794
https://doi.org/10.1108/ECAM-05-2020-0369
https://doi.org/10.1108/ECAM-05-2020-0369
https://doi.org/10.24425/ace.2023.147672

	Hairong Huang, Lian Yuan, Huiji Wang, Haoran YuanIntelligent building construction site safety inspection model based on YOLOX

