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Adaptive building engineering component extraction model
based on DSOD
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Abstract: With the purpose to bring up the extraction efficiency and accuracy of building construction
image component information, the dense block structure and loss function were proposed to optimize the
deep supervised object detection algorithm, and an adaptive building construction component extraction
model based on this algorithm was constructed. The improved depth-supervised target detection algorithm
constructed by the study is validated and found to have an accuracy of 87.4% and a precision of 0.84,
which is better than other comparative algorithms. The effectiveness of the adaptive extraction model of
building components constructed by the research is verified, and it is found that the extraction error of the
model is 9.8%, the value of the loss function is 0.2, and the satisfaction score of the experts is 8.8, and its
extraction accuracy and efficiency are better than that of the other models, and it can satisfy the demand
for the extraction of components of the construction project. In summary, it can be seen that the adaptive
extraction model of building components constructed by the research has excellent information extraction
performance, not only can it improve the efficiency of extracting engineering components, but it can also
significantly enhance the decision support ability in construction management, optimize resource allocation,
reduce risks, and improve the management efficiency of engineering projects. It has a positive contribution
to the theory and practice of construction management discipline.
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1. Introduction

Rapid development of construction engineering has occurred, and the continuous promotion
of intelligence, the extraction of adaptive construction engineering components has become
significant study direction. The research of adaptive construction engineering component
extraction model has significant meaning for making the efficiency higher, reducing the cost
and ensure the quality of construction engineering [1, 2]. The traditional component extraction
method mainly relies on manual work, but this method has problems such as high labor
cost, low efficiency and error-prone [3]. Deeply Supervised Object Detection (DSOD), as
a deep learning-based target detection algorithm, has strong feature expression capability and
detection accuracy [4]. Compared with traditional target detection algorithms, DSOD can
better cope with the target extraction problem in various complex scenes. By introducing
the DSOD algorithm, it can be effectively applied to adaptive construction engineering
component extraction to improve the automation and accuracy of component extraction [5].
Although various algorithms have been proposed in recent years to improve the efficiency
of component information extraction in construction images, these algorithms still face the
challenges of low accuracy and efficiency in processing large-scale and complex scenes. In
response to this challenge, the study proposes to construct an adaptive construction engineering
component extraction model based on DSOD algorithm to improve the efficiency and accuracy
of component extraction. Innovatively optimize dense block structures and loss functions, and
apply the improved DSOD algorithm to the construction field to improve recognition accuracy
and processing speed. The contribution of the study is that it can provide a new solution
for automation and intelligence in the field of construction engineering, further make the
efficiency of engineering component extraction greater and accuracy, while providing technical
support for the construction management field, and assist the construction engineering to
save human resources and time costs, improve the management level of engineering projects.
The first section of this study introduces the current development status of DSOD algorithm
and building engineering component extraction methods. The second section describes the
optimization process of DSOD algorithm and constructs an adaptive extraction model for
building engineering components based on the improved DSOD algorithm. The third section
conducted performance tests on the optimized DSOD algorithm and building component
extraction model constructed, evaluating their performance in terms of accuracy, efficiency,
and stability. The fourth part is the conclusion and future research directions.

2. Literature review

With the rapid development of science and technology, DSOD algorithms have more
and more extensive applications in various fields. In order to highlight target detection, Ji
et al. proposed to construct a DSOD feature enhancement network based on branches by
combining the global environment perception information in contextual relations, which utilizes
self-attention to propagate the global environment information, and empirical experiments on
this network found that it achieved better results than other methods on multiple benchmark
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datasets [6]. To realize adaptive reconstruction of masked images, Ma et al. proposed a DSOD
two-stage self-supervised pre-training method, which was validated for effectiveness and found
to perform better than traditional methods, and it showed good performance in domain-specific
tasks [7]. In order to accurately identify human body movements and postures, Konier et al.
proposed to construct a DSOD supported evaluation model for technical evaluation of old
buildings. The effectiveness of the model was ultimately verified, and it was found that the
action recognition performance of the model was superior to traditional methods [8]. Aiming
at the problem of difficulty in correlating historical data with the latest data in multi-task object
tracking task, Mishra and Aswathy proposed to construct a target detection model based on
DSOD technique, validated the effectiveness of the model, and found that the model has better
tracking, and detection performance compared to the traditional multi-task target [9].

The progress of computer technology has also led to the rapid development of other fields,
and many technologies have been applied to building components. In order to further improve
the detection and localization accuracy of building components, Kumar et al. proposed to
construct a framework for the detection of building components based on the silo monitoring
technology, and validated the effectiveness of the framework, which was found to be more
convenient than the traditional method [10]. In order to analyze the influence of building
orientation and process induction on component defects, Stern et al. proposed to validate the
performance of engineering components based on fatigue testing, and found that the void
distribution and fatigue behavior of components are related to component orientation [11]. To
ensure the visual quality of motor vehicle drivers, Esmaeeli et al. proposed to construct a driving
route planningmodel based on digital elevationmodel and urban road network, and validated the
effectiveness of the model, and found that the model can be used to formulate a safety strategy
for drivers by combining the geometric features of the building and the road [12]. In order to
improve the strength of building components, Szymon et al. analyzed the defect factors related
to building components from the perspective of additional load reinforcement of damaged
load-bearing frame structures in coal-fired power plants, found that improper installation and
environmental conditions were the main influencing factors, and proposed effective solutions.
The experimental results verified the effectiveness of the proposed scheme [13].

To summarize, the research on DSOD algorithm is more and more mature, but the research on
applying the algorithm in adaptive extraction of building components is still less. Therefore, the
research constructs the adaptive component extraction model of construction engineering based on
DSOD detection algorithm to the efficiency and accuracy of engineering component extraction.

3. DSOD-based adaptive construction engineering
component extraction model construction

In order to improve the efficiency and accuracy of construction engineering components
extraction, the study improved the DSOD algorithm and constructed an adaptive building
engineering component extraction model based on this algorithm, aiming to solve the challenge
of automatic recognition and extraction of components in building engineering images. The
study first introduces the improvement of the dense block structure and loss function of
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the algorithm, and then constructs an adaptive building engineering component extraction
model based on the improved DSOD algorithm. The model dynamically adjusts the detection
parameters according to the characteristics of the input image. Among them, the adaptive
mechanism of this model can ensure that the recognition of components still maintains high
accuracy and low error in the ever-changing construction engineering environment, in order to
provide an effective technical path for image analysis of construction engineering.

3.1. Improved DSOD building automatic detection algorithm
construction

DSOD is a deep learning-based algorithm for automatic building detection,which can realize
automatic detection and localization of building components by using a deep convolutional
neural network The DSOD algorithm employs multi-scale feature fusion, which can effectively
detect buildings of different scales and sizes [14, 15]. In addition, the DSOD algorithm can
enable the network to better learn and understand the features of buildings by adding supervised
signals at different layers of the network [16]. Therefore, the DSOD algorithm has good
application in the field of automatic detection of building components, which can quickly and
accurately detect the location and bounding box of the building, and provide the basis for the
subsequent identification and classification of building components. The overall structure of
the DSOD algorithm is shown in Fig. 1.

Fig. 1. Overall structure of the DSOD algorithm

As shown in Fig. 1, DSOD consists of two parts, mainly including the feature extraction
backbone subnetwork and the prediction multiscale response front segment subnetwork. The
main function of the former is image feature extraction and the latter is mainly multi-scale
feature layer prediction. Among them, the feature extraction sub-network mainly utilizes
the dense connected network (DenseNet) to facilitate the flow of information and the reuse
of features. Compared with the traditional convolutional neural network, DenseNet is more
compact and has better gradient propagation and feature representation. The DenseNet structure
consists of multiple dense blocks, transition layers, unpooled transition layers, convolutional
layers, and maximally pooled layers. In the feature extraction subnetwork, the formula for
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extracting features is shown in Eq. (3.1).

(3.1) xi = Hi ([x0, x1, . . . , xi−1])

In Eq. (3.1), x0, x1 and x1 denote the inputs of the layers before the i th layer; [x0, x1, . . . , xi−1]

denotes the cascade of feature mapping. It can be seen that the traditional DSOD algorithm
mainly relies on multi-layer supervised learning to improve the learning ability and general-
ization ability of the algorithm. However, multilayer supervised learning may have problems
such as unstable training and vanishing gradient, which in turn leads to the reduction of the
convergence speed and accuracy of the algorithm. Therefore, in order to optimize the training
strategy of multilevel supervised learning, the study proposes to improve the dense block
structure and loss function of DSOD algorithm. The improved dense block structure of DSOD
is shown in Fig. 2.

Fig. 2. Improved DSOD structure

As Fig. 2, in the improved feature extraction subnetwork, the input 300×300 image acquires
a 38×38 feature layer when it passes through the second dense module. Subsequently, this
feature layer passes through the transition pool layer into the inflated convolutional Inception
module, which can simultaneously extract features at different scales and facilitate the flow of
information and the fusion of feature information through dense connections. In the improved
feature prediction sub-network, it is investigated to achieve automatic detection and localization
of buildings through multi-scale feature fusion and multi-layer supervised learning. The feature
prediction subnetwork fuses the 38×38 feature layer with the 19×19, 10×10, 5×5 and 3×3
feature layers to obtain feature information at different scales. In addition to this, the study also
utilizes the depth-separated convolution and channel attention mechanism to improve the dense
block structure. The modified dense block structure constructed by the study is shown in Fig. 3.

As shown in Fig. 3, the study improves the dense block structure using normalization, linear
activation function and depth separable convolution. In this case, the dense blocks are connected
in a densely connected manner. The formula for data normalization is shown in Eq. (3.2).

(3.2) x ′ =
x − E |x |√

Var [x]



350 NA LV, XUAN YANG

Fig. 3. Improved dense block structure

In Eq. (3.2), x represents the input data; E |x | represents the mean operation of the input
data;

√
Var [x] represents the standard deviation of the input data. Since data normalization

requires transform reconstruction of the input data, this operation may lead to changes in
data distribution differences. For the purpose to ensure the robustness of the input data, the
study proposes to add the transformation reconstruction parameter to correct it. The correction
calculation formula for transform reconstruction is shown in Eq. (3.3).

(3.3) y = γx ′ + β

In Eq. (3.3), γ and β denote the transform reconstruction correction parameters. Among
the linear activation parameters, the activation function used in the study is the Relu function,
which is calculated as shown in Eq. (3.4).

(3.4) Relu(x) =
{

x, x ≥ 0
0, x < 0

In the dense block information fusion method, the fusion method used in the study is the
Concat connection method, which is calculated as shown in Eq. (3.5).

(3.5) Zconcat =

m∑
i=1

xi ⊗ Ki +

m∑
i=1

yi ⊗ Ki+c

In Eq. (3.5), xi and yi denote the channel inputs of different paths, respectively; m denotes
the number of feature layers; K denotes the fusion coefficient; c denotes the number of existing
channels; and ⊗ denotes the fusion algorithm. In addition, the study also utilizes the attention
mechanism module to improve the dense module in order to enhance the feature extraction and
discrimination ability of the algorithm. Among them, the attention mechanism module includes
three parts: Compression, reward and attention. Among them, the formula of compression is
shown in Eq. (3.6).

(3.6) zc =
1

H ×W

H∑
i=1

W∑
j=1

uc(i, j)

In Eq. (3.6), W denotes the mapping; H denotes the output sequence; H denotes the output
value vector. The formula of the excitation function is shown in Eq. (3.7).

(3.7) sc = sσ(g(z,W)) = σ(ω2δ(ω1z))
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In Eq. (3.7), δ denotes the Relu activation function; σ denotes the Sigmoid function; W1
and W2 denote the weights of the two full connections; and g denotes the reward coefficient.
The incentive module can enhance the attention of the key channel, and its final output is
calculated as shown in Eq. (3.8).

(3.8) x = Fscale(uc, sc) = scuc

The study improves the feature extraction sub-network and feature prediction sub-network
along with the loss function of DSOD to achieve better results in the building detection task.
The loss function of DSOD consists of the edge regression loss and the category confidence
loss. The weighted sum of its total loss is calculated as shown in Eq. (3.9).

(3.9) L(x, c, l, g) =
1
N
(Lconf(x, c)) + αLloc(x, l, g)

In Eq. (3.9), N denotes the number of positive samples in the default frame; Lconf denotes
the category confidence loss; α denotes the weights; Lloc denotes the border regression loss.
The formula of category confidence loss is shown in Eq. (3.10).

(3.10)


Lconf(x, c) = −

N∑
i∈Pos

xp
ij log(ĉpi ) −

∑
i∈Neg

log(ĉ0
i )

ĉpi =
exp(cpi )∑

p(c
p
i )

In Eq. (3.10), i and j denote the i-th and j-th default box, respectively; p denotes the type
of category. The formula for the border regression loss is shown in Eq. (3.11).

(3.11) Lloc(x, l, g) = −
N∑

i∈Pos

∑
m∈{cx,cy,w,h}

xki j smooth L1(lmi − ĝ
m
j )

In Eq. (3.11), (x, y,w, h) denotes the real frame; lmi denotes the positional offset between
the predicted frame and the default frame; ĝmj denotes the positional offset between the real
frame and the default frame. The SmoothL1 loss calculation formula for border regression is
shown in Eq. (3.12).

(3.12) SmoothL1(x) =
{

0.5x2, |x | < 1
|x | − 0.5, otherwise

3.2. Adaptive construction engineering component extraction model
construction based on improved DSOD

Traditional methods for component extraction in construction engineering mainly rely
on building construction drawings and graphical understanding, or are based on rules and
experience for component extraction. These methods often have the problems of strong
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dependence on rules and experience and the inability to recognize occlusion and fuzzy
graphics [17, 18]. For the identification of structural elements, although simple building
engineering component extraction models are easy to implement, their accuracy and robustness
often cannot meet the requirements of engineering projects for high precision and efficiency.
Therefore, a self-adaptive building engineering component extraction model based on the
improvedDSODalgorithmwas constructed and applied to the extraction of building components
in building engineering, in order to improve the model’s generalization ability and adaptability
to complex environments. There are many types of construction engineering components,
and the number of their types is directly affected by the classification standard [19]. The
research adopts the engineering data exchange standards and civil building design standards of
international construction industry entities to ensure that the model can accurately identify and
classify the main components of the building [20, 21]. These standards provide a standardized
description of the main components of a building, defining building engineering components
as beams, columns, slab walls, and stairs. Research is conducted on learning these different
component categories through the DSOD algorithm, in order to accurately identify and classify
the main building components in practical applications. The schematic diagram and geometric
characteristics of each component are shown in Table 1.

Table 1. Schematic diagram and geometric characteristics of the building components

Engineering
components Conception Geometrical characteristics and

their classification

Beam
Beams are components placed horizontally or

inclined to carry the gravity load of the
superstructure such as floors and walls.

Rectangular beam, variable section
beam, T-shaped beam, channel

beam and box girder

Column
Columns are vertically placed components used to
withstand the gravity and lateral loads of the

structure and to transfer them to the foundation.

Rectangular column, round column,
regular triangular column, regular

pentagonal column, regular
hexagonal column, regular

octagonal column and regular
dodecagonal column

Plank
The plate is used to cover the horizontal

components between the floors, mainly bearing
the floor weight and live floor load.

Rectangular, T, trough plates

Wall

Walls are vertically placed structural members
used to withstand the gravity and lateral loads of
the structure and to provide the stability and

stiffness of the building. stiffness of the building.

Rectangular wall, square wall, X
wall, L wall, T wall

Stairway
Stairs are a vertical channel connecting the

different floors of a building for people to move up
and down.

double run stairs, multi-run stairs,
double parallel stairs, double corner
stairs, cross stairs, double three run
stairs, scissors stairs, triangular
staircase and corner staircase
staircase and corner staircase
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As shown in Table 1, there is a wide variety of building foundation components, and
the shapes of components in the same category are different. This makes it difficult to
accurately and quickly identify and classify building components. Therefore, the study
proposes to utilize the improved DSOD detection algorithm to construct the DSOD adaptive
building engineering component extraction model to realize the accurate extraction of building
foundation components. The adaptive component extraction model based on optimized DSOD
algorithm is shown in Fig. 4.

Fig. 4. Adaptive component extraction model based on optimized DSOD algorithm

As shown in Fig. 4, since there is a lack of ready-made construction project build images,
the study proposes to utilize construction project drawings and simulation model data to
construct a complete component library. After completing the construction of the dataset, the
study utilizes Labelimg to label the location and category of the target images, and divides the
dataset into a training set and a validation set. Subsequently, the data preprocessing stage was
entered. The data preprocessing operations used by the study include dimensional unification
of the images, data enhancement, etc., to improve the algorithm’s ability to recognize building
blocks of different scales and angles. Next, the study uses the constructed dataset to train the
improved DSOD algorithm, and optimizes the model parameters and loss function through
several iterations. During the training process, the study also utilizes operations such as
learning rate decay and regularization to prevent the occurrence of overfitting phenomenon.
After completing the training of the algorithm, the study inputs the validation set into the
DSOD building component extraction model, and according to the actual needs of construction
projects, the study labels the categories of components and evaluates their performance based
on the labeling results. The evaluation metrics used in the study include accuracy, recall and
F1 value. Subsequently, the study tunes the model according to the evaluation results, such
as adjusting the model parameters and increasing the training data, in order to improve the
performance of the model. Finally, the model is applied to actual construction projects for
component prediction. The image data of the construction project is input, and the automatic
detection and extraction of the components is carried out by the model, which outputs the
location and category information of the components. The subsequent engineering analysis
and design can be further carried out to improve the efficiency and quality of the construction
project. The function of the adaptive extraction system for building project components
constructed by the research is shown in Fig. 5.
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Fig. 5. Functional module of adaptive extraction system for construction engineering components

As can be seen from Fig. 5, the proposed adaptive extraction system for building engineering
components includes an image dataset creation module, a structural component detection
module, a detection result display module and a user management module. The image dataset
creation module is mainly used to create image datasets of building engineering components for
training and testing, including model generation, scaling, combining, transforming viewpoints
and angles of components, etc., in order to obtain diversified image data. And the function
of structural component detection module is to use DSOD algorithm to detect and recognize
the components of the input construction engineering images, including image preprocessing,
feature extraction, target detection and classification and other steps in order to achieve accurate
component detection. Detection results display module can visualize the results of component
detection to the user, the detection results are mainly in the form of images showing the detected
component location, category and confidence and other information, which is convenient for
the user to view and analyze. The user management module is used to manage the users of
the system, including user registration, login, rights management and other functions, which
will involve user authentication, access control, data security and other aspects of the work to
ensure the security and reliability of the system. Through the adaptive extraction system of
building engineering components constructed by the research, users can easily create image
data sets, conduct component detection, and view the detection results.

4. Validation of the effectiveness of DSOD-based adaptive
construction engineering component extraction model

To verify the effectiveness of the DSOD detection algorithm and the DSOD construction
engineering component extraction model proposed in the study, the study conducts performance
comparison experiments and empirical analyses on them respectively.
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4.1. Validation of the effectiveness of DSOD construction detection
algorithm

To validate the effectiveness of the improved DSOD-based component detection algorithm
proposed in the study, performance comparison experiments are conducted using images of
building structural components captured in the study as a validation set. The comparison
algorithms are YOLO (You Only Look Once), Faster Region-based Convolutional Neural
Network (Faster RCNN) and Convolutional Neural Network (CNN) based component detec-
tion algorithms. Network (CNN) based component detection algorithms. The performance
comparison metrics are accuracy, Precision Recall (PR) curve, F1 value, precision, error and
runtime. The experimental environment is Matlab. The comparison results of accuracy and PR
curve between DSOD algorithm and other algorithms are shown in the Fig. 6.

(a) Accuracy results of DSOD algorithm com-
pared to other algorithms

(b) PR curves of DSOD algorithm and other
algorithms

Fig. 6. Comparison of accuracy and PR curve between DSOD algorithm and other algorithms

In Fig. 6(a), as the number of iterations increases, the accuracy value of the selected
algorithm also increases. Among them, the accuracy curve of DSOD algorithm is generally
higher than YOLO, Faster RCNN, and CNN algorithms. The highest accuracy of the DSOD
algorithm is 89.3%, the lowest accuracy is 84.31%, and the average accuracy is 87.4%. In
Fig. 6(b), the PR curve of the DSOD algorithm has the largest offline area, with an offline area
of 0.78, which is superior to other algorithms. It can be seen that the DSOD algorithm proposed
by the research institute has good accuracy and precision performance. The comparison results
of F1 values and accuracy between DSOD algorithm and other algorithms are shown in Fig. 7.

In Fig. 7(a), the F1 values of the DSOD algorithm proposed in the study are generally
higher than those of YOLO, Faster RCNN, and CNN algorithms. Among them, the F1 value of
DSOD algorithm is the highest, with a value of 0.86, which is 0.08 higher than the F1 value of
YOLO algorithm. In Fig. 7(b), the DSOD algorithm has the highest accuracy, with a value
of 0.84, which is 0.04 higher than the YOLO algorithm. It can be seen that the detection
performance of the DSOD algorithm proposed by the research institute is superior to other
detection algorithms, and has certain practical application value. The comparison results of
error and running time between DSOD algorithm and other algorithms are shown in Fig. 8.
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(a) F1 results of DSOD algorithm and other algo-
rithms

(b) Accuracy results of DSOD algorithm compared
to other algorithms

Fig. 7. Comparison results of F1 value and accuracy between DSOD algorithm and other algorithms

Fig. 8. Comparison results of error and running time between DSOD algorithm and other algorithms

As shown in Fig. 8, the error value of the proposed DSOD algorithm is 12.6%, while the
error values of YOLO, Faster RCNN, and CNN algorithms are 16.4%, 21.8%, and 23.3%,
respectively, which are lower than the error values of other detection algorithms. In addition,
in the speed performance testing experiment, the running time of the DSOD algorithm was 2.8
seconds, while the running times of other detection algorithms were 5.3 seconds, 3.9 seconds,
and 3.3 seconds, which was 0.5 seconds shorter than the CNN algorithm. It can be seen that
the detection error and detection efficiency performance of DSOD algorithm are higher than
other comparative algorithms, which is very helpful for the detection of building components.
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4.2. Performance testing of adaptive construction engineering
component extraction model for DSOD

After completing the validation of the effectiveness of the DSOD target detection algorithm,
the study empirically analyzes the building component extraction model based on the DSOD
target detection algorithm. The dataset used for this empirical analysis experiment is the
building components dataset collected by the study. The comparison models are the building
extraction models based on CNN target detection algorithm, Faster RCNN target detection
algorithm, Faster RCNN target detection algorithm and YOLO target detection algorithm. The
performance comparison metrics are construct extraction accuracy, error, and loss function
value. In addition, in order to explore the practical application effect of the model, the study
also conducts a satisfaction score. The experimental environment is a server with CPU
(Intel®Core™i7-9700 CPU @ 3.00 GHz ×8) and Matlab simulation platform. The results of
the comparison of the accuracy of extraction of member beams, columns and slabs for each
comparison model are shown in Fig. 9.

(a) Extraction results of indoor
component beams

(b) Extraction results of indoor
component columns

(c) Extraction results of indoor component boards

Fig. 9. Comparison results of the component extraction accuracy of each model
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Fig. 9(a) shows the results of the comparison of the extraction accuracy of each model for
building component beams, as shown in Fig. 9(a), the proposed DSOD building component
extraction model of the study is better than the other models in building component beams, and
its target extraction curves are better fitted to the actual values, with an accuracy of up to 90.1%.
Fig. 9(b) gives the information about the extraction accuracy of each model for building compo-
nent columns, as shown in Fig. 9(b) The DSOD building component extraction model proposed
in the study is better than other models in building component beams, with an accuracy of up to
91.4%. Fig. 9(c) shows the results of the comparison of the extraction accuracy of eachmodel for
the building component plate, as shown in Fig. 9(c), the proposed DSOD building component
extraction model of the research is better than the other models in the building component plate,
with an accuracy of up to 89.4%. Summarizing the results, it can be seen that the accuracy
performance of the research-proposed building component extraction model based on DSOD
target detection algorithm is better than other models. The comparison results of the target
extraction error values and loss function values of each comparison model are shown in Fig. 10.

(a) Comparison results of the target extraction error
value of each comparison model

(b) Comparison results of the loss function value
of each comparison model

Fig. 10. Comparison results of the target extraction error value and the loss function value of each
comparison model

Fig. 10(a) shows the results of the error value comparison of each comparison model. As
shown in Fig. 10(a), the error value curve of the proposed DSOD building component target
extraction model is overall lower than that of other comparison models, and its average error is
9.8%, which is lower than that of other target extraction models. And the fluctuation amplitude
of the error curve of this model is smaller than other comparative models, with better stability.
Fig. 10(b) shows the results of the comparison of the loss function values of the comparison
models, as shown in Fig. 10(b), the loss function value of eachmodel decreases with the increase
of the number of iterations until it stabilizes. However, the loss function value of the proposed
DSOD building component target extraction model is overall lower than that of the other
comparative models, which is 0.2. Summarizing the above results, it can be seen that the stability
and reliability performance of the proposed DSOD building component target extraction model
is better than that of the other models. The study also conducted a satisfaction survey using
expert ratings. The results of the satisfaction survey for each model are shown in Fig. 11.
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Fig. 11. Satisfaction evaluation results of each comparison model

As shown in Fig. 11, in the satisfaction evaluation, the proposed DSOD target detection
algorithm gives an outcome of the highest satisfaction, with an average satisfaction score of
8.8, and all expert users’ ratings are above 8, which indicates that the design results of the
model can meet the actual needs of building component extraction, and further proves the
validity of the automatic building component extraction model based on the DSOD target
detection algorithm.

5. Conclusions

With the rapid development of computer technology, in order to realize the automatic
recognition and extraction of building components in construction engineering images, the
study proposes to improve the dense block structure and the loss function of DSOD algorithm, to
construct the improvedDSODdetection algorithm, and to construct the adaptive construction en-
gineering component extraction model based on this algorithm. The effectiveness of the DSOD
detection algorithm and the adaptive extraction model of building components constructed by
the research is verified, and it is found that the accuracy of DSOD algorithm is 87.4%, the area
under the line of the PR curve is 0.78, the F1 value is 0.86, the precision is 0.84, the error value
is 12.6%, and the running time is 2.8s, which is better than other algorithms. The effectiveness
of the DSOD adaptive extraction model for building components was verified and found to have
an accuracy of up to 91.4% in building components with an average error of 9.8% and a loss
function value of 0.2, which is better than other models. In addition, the study also conducted
a satisfaction survey of the model and found that it had an average satisfaction score of 8.8,
which is a higher satisfaction score than the other compared models. In summary of the results,
the adaptive extraction model of building components based on DSOD algorithm constructed by
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the study shows excellent performance in building component recognition, the accuracy of risk
prediction and resource allocation has been improved, aswell as the overall quality and efficiency
of construction project management. The application of this model helps with rapid decision-
making in construction management. However, there are still some limitations in the study, and
the number of samples and types of construction image datasets constructed in the study are
limited, which affects the generalization ability and robustness of the model to a certain extent.
In the future, more construction engineering image data can be added to construct the dataset.
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