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Abstract: The paper presents the problem of damage detection in steel girders. Static displacements at the
selected point of the structure play the role of measured variables. Structural response signal decomposition
is performed according to the Mallat pyramid algorithm, which is used to perform the discrete wavelet
transform (DWT). This procedure allows us to quite well determine the location of structural damage.
The geometry and the placement of any defective part of the structure may have a random character.
It can be assumed that the random processes occurring in the broadly understood structure mechanics are
Gaussian in nature. The first four probabilistic moments are estimated using three approaches independent:
semi-analytical (SAM), perturbative (SPT), and Monte-Carlo simulations (MCS). The semi-analytical
random approach seems to be the most optimal due to the necessary computation time. The incorporation
of the mathematical stochastic apparatus into the classical (deterministic) analysis of the statics of the
structure makes it possible to estimate the reliability measures of the analyzed girder.
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1. Introduction
The localization of damage in engineering structures is still a topic of current scientific

research. Currently, the leading role is played by non-destructive methods based on information
on loads that had been deeply examined by Mróz and Garstecki [1], evolutionary algorithms
investigated by Burczyński et al. [2], or an application of wavelet functions to the structural
response decomposition what had been presented by Rucka [3] and Kamiński et al. [4]. The
application of the discrete wavelet transform (DWT) to the enhancement of any structural
response can have significant advantages in the field of estimation/identification of a weakened
(damaged) part of a structure, which can be observed in works of e.g. Knitter-Piątkowska [5,6].
Ziopaja et al. [7] applied the discrete wavelet transform to damage detection in thermal
experiments. Similarly, Hanteh et al. [8] used wavelet function in the damage detection
of precast full panel building based on experimental results and wavelet analysis. Similar
research was carried out by Kuryłowicz-Cudowska and Wilde [9]. Wang and Tang applied
a magnetic impedance approach to structural damage detection [10], on the other hand,
Chen et al. describe a feature extraction and selection for defect classification of pulsed
eddy current [11]. Skłodowski et al. investigated the identification of subsurface detachment
defects by acoustic tracing [12]. Wójcik and Żarski were involved in the research of the
measurements of surface defect area with an RGB-D camera for a BIM-backed bridge
inspection [13]. Neural networks for the diagnosis of electrical damage to the induction
motor using the axial flux were applied by Skowron [14]. In the other hand, a damage
identification of a bridge model based on empirical mode decomposition algorithm has been
investigated by Lu et al. [15].

The phenomenon of structural damage is generally random. Therefore, random analyses
were performed for the selected displacement parameter and random variables in the form
of a variable Young’s modulus and the size of damage propagation (cracks). The random
approach to the problem can be expressed using three methods: semi-analytical (SAM),
perturbative (SPT), and Monte-Carlo simulation (MCS). These methods have found wide
application in engineering science, e.g. the stochastic perturbation technique (SPT) has
been described comprehensively by Kamiński [16, 17]. The random approach to the fracture
mechanics shot was also presented by e.g. Chowdhury et al. [18] as well as Zhang et al. [19].
Dynamic analysis of a steel mast with environmental uncertainties has been performed by
Bredow and Kamiński [20].

The present work aims to detect the localization of defective parts of the structure provided
that damage (weakness) takes place and the application of a random approach to determine
the response of the structure as a function of developing damage. The Daubechies set of
wavelets [21] coupled with the Mallat pyramid algorithm [22] will be applied. The second,
important element of this work is the random approach to the development of damage and the
related response of the structure. Finally, the probabilistic relative entropy and the additional
reliability measure will be determined for the selected considering problem, and these quantities
will be determined according to Bhattacharyya’s theory [23, 24].
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2. Discrete wavelet transform applied
for damage localization

It is assumed that there is a function ψ(t), called the wavelet function (mother function),
which is continuous and belongs to the field of L2(R). The function ψ(t) must satisfy the
condition of admissibility [8]. The mother function may be real- or complex-valued. In the
considered cases the real-valued wavelets will be applied. For signal decomposition, the whole
set of functions (wavelet family) must be derived, which can be obtained by translating and
scaling the function ψ which can be written using the relation:

(2.1) ψa,b =
1√
|a |
· ψ

(
t − b

a

)
where t is a time or space coordinate, a and b are the scale and translation parameters,
respectively. These two parameters a and b take real values (a, b ∈ (R)), except that a , 0.
The element |a |−1/2 expresses the scale factor which ensures the constant wavelet energy
regardless of the scale, i.e. ‖ψa,b ‖ = ‖ψ‖ = 1.

In the current analysis, Discrete Wavelet Transform (DWT) is applied. In this case, the
wavelet family can be obtained by the substitution expressions a = 1/2j and b = k/2j to
the equation (2.1), which leads to the wavelet family formula:

(2.2) ψj,k(t) = 2(j/2) · ψ(2j · t − k)

in which k and j are scale and translation parameters, respectively.
The Discrete Wavelet Transformation (DWT) of the signal which may be, e.g., the response

function of the structure f (t) is expressed by the following formula:

(2.3) W f ( j, k) = 2j/2 ·

∝∫
−∝

f (t) · ψ(2j · t − k) dt = 〈 f (t), ψj,k〉

In the presented analysis, a one-dimensional wavelet transform will be used. The decompo-
sition procedure of a discrete signal is performed according to the Mallat pyramid algorithm [6],
which can be given in general

(2.4) fJ = SJ + DJ + · · · + Dj + · · · + D1

wherein each component in any signal representation has a specific range of frequency and
provides information at the scale level and J, DJ , SJ , D1 express the discrete parameter
indicating the level of a multi-resolution analysis (MRA), the details and rough parts of the
transformed signal, and the most detailed representation of the transformed signal, respectively.
The function describing a signal has to be defined by N = 2J discrete values to ensure the
condition of the dyadic DWT.
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3. Probabilistic analysis

3.1. Random structural analysis – a brief overview of the methods

The extent of damage to the structure in a selected location has a random character. The
damage may be expressed by a simple reduction in the cross-section of any single bar or several
bars of the truss under consideration, wherein the degree of cross-sectional area reduction may
be random. Similarly, the damage may be a crack (crevice) of random geometry both in the
truss rod and in the I-section girder. The considered steel girders will be subjected to classic
code loads. All calculations of the distribution of forces and displacements will be made while
using the Finite Element Method (FEM) utilizing the Autodesk Robot Structural Analysis
Professional or AxisVM packages with bar and shell finite elements. A finite number of solved
deterministic approaches with a variable (random) nature of damage is necessary to carry
out further random processes. Probabilistic approaches include the Monte-Carlo simulation,
the semi-analytical approach, and the iterative generalized stochastic perturbation method.
The set of response functions necessary for probabilistic analyses has been obtained as the
third-order polynomials and the Least Square Method (LSM) approximation. Probabilistic
response in the form of up to the fourth order characteristics is studied numerically in addition
to the input uncertainty level. The probabilistic characteristics in the form of expectations,
standard deviation, coefficients of variation skewness, or kurtosis will be estimated:

E(a ) =

+∞∫
−∞

n∑
j=0

Ci jv
jpv(x) dx, σ(a ) =

{ α∫
−α

( n∑
j=0

Ci jv
j − E[a]

)2
pv(x) dx

} 1
2

,(3.1)

α(a ) =
����σ(a )E(a)

����, β(a ) =
µ3(a)
σ3(a )

, κ(a ) =
µ4(a )
σ4(a )

(3.2)

where a is the selected design parameter.
Three approaches are most commonly used in random analysis: the Semi-Analytical Method

(SAM), the Stochastic Perturbation Technique (SPT), and the Monte-Carlo simulations (MCS).
For all three approaches, it is necessary to fit the structure response function curves based
on a previously determined finite set of relationships: design parameter – structure response.
According to the first approach (SAM), all probabilistic characteristics are estimated directly
in an analytical way, assuming a fixed probability distribution of a given design quantity,
e.g. Gaussian normal distribution for structural analysis. According to the second approach
(SPT), the response curve is expressed as a Taylor series in the vicinity of the mean value using
the perturbation parameter ε > 0. The Monte-Carlo Simulation (MCS) is based on the law
of large numbers. A large number of trials is needed to obtain good accuracy. Here, the final
probabilistic characteristics are estimated using statistical characteristics formulas.

In all the above approaches, it is necessary to assume a probability density function of the oc-
currence of a given phenomenon or feature – here normal Gaussian distribution function, which
is characteristic of the random behavior of structures or elements of engineering structures.
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3.2. Safety measure

The probabilistic approach allows to obtain the satisfactory safety of the given struc-
ture which may be measured using the First Order Reliability Method (FORM) reliability
index [23, 24]

(3.3) βFORM =
E[R] − E[E]√

Var(R − E)
=

E[a] − E
[ 3

4 a
]

σ
(
a − 3

4 a
) ,

where the value 3/4 is the allowable interval of the designed value a. A similar calculation
can be carried out using a relative entropy H which can be estimated due to the Bhattacharyya
theory [23]

(3.4) H =
1
4
(E[R] − E[E])2

σ2(R) + σ2(E)
+

1
2

ln
(
σ2(R) + σ2(E)

2σ(R)σ(E)

)
.

These measures may enable the engineering assessment of the safety of the analyzed
structure. Finally, the safety measure related to H and compensable to β form is obtained as:

(3.5) β(H) =
1
2
√

H.

All calculations will be performed while using the package MAPLE v.21 for advanced
mathematical analysis. The design quantities, i.e. the quantities describing the damage, occur
according to the Gaussian probability distribution. The most computationally time-consuming
is the Monte-Carlo simulation technique, where a very large number of trials is necessary.

4. Geometrical imperfections in the steel girders
Weaknesses in the structure may be various, for example: a) in the form of reduced

cross-section stiffness (Fig. 1), b) in the form of a crack at the lower chord of the truss (Fig. 2),
and c) in the form of scratching at the connection (Fig. 3). It is assumed that each of the defects
may propagate.

Fig. 1. Weakening in the form of a reduction in stiffness (loss) on the cross-section
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Fig. 2. Weakening in the form of a crack at the lower chord of the truss

Fig. 3. Weakening in the form of a scratching at the connection

5. Numerical examples

5.1. The truss girder modeled by bar elements

A truss made of steel profiles will be analyzed. The presented structure is an actual and
implemented in the reality structural design. To obtain the structural response signal, the
numerical analysis using the Finite Element Method (FEM) has been. According to the simplest,
bar approach, a two-node spatial bar element has been implemented. This element is shown in
Fig. 4, where the nodal displacements and the corresponding nodal forces are presented.

The system of equations of the FEM for the whole structure has a classical form:

(5.1) K · q = P,

where K, q, and P are the structural stiffness matrix, structural displacement, and loading
vectors.

The material and loading parameters of the structure are presented in Tables 1 and 2,
respectively.

The dimensions of the analyzed single truss girder (assumed with the introduced weakening
of the cross-sections) are shown in Fig. 5. The number finite elements is 155.
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Fig. 4. The two-node finite element used for the description analyzed truss [25]

Table 1. Material data of the analysed truss

Data Steel Cross-section

Lowe chord S235 HEA120

Upper chord S235 HEA140

Cross rod S235 RK 70 × 70 × 4

Table 2. Loading data of the analysed truss

Loading Deadweight Constant Variable Snow Wing

Lowe chord Standard 2.1 2.4 4.32 0.9

Fig. 5. Truss girder subjected to damage detection analysis

5.1.1. Direct DWT application

The structural response signal has been analyzed and transformed using DWT procedures.
The place of the introduced damage is visible in Fig. 6. The weakening was mimicked in the
form of a reduction in the value of the elastic Young’s modulus along the entire finite element
located in the symmetry axis of the truss girder.

Fig. 6. Analysed truss girder with introduced weakened element
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The Young modulus E varies regularly from 126 GPa to its reference value E0 = 210 GPa
according to the relation E = δ · E0. These relationships are provided in Table 3.

Table 3. Assumed variability of Young’s modulus

Step 0 (ref.) 1 2 3 4 5 6 7 8

δ 1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6

E [GPa] 210.0 199.5 189.0 178.5 168.0 157.5 147.0 136.5 126.0

The vertical displacements of the lower chord and the rotation angles of the cross-sections
at the FEM nodal points have been measured. The results of DWT transformation of the
signal in the form of difference between vertical displacements obtained from defective and
undamaged structures are presented in Fig. 7. The damage was assumed as 20% of Young’s
modulus value, namely step 4 of the analysis (see Table 3). It is visible that the evident peak
properly indicates the presence and location of the weakened element.

Fig. 7. 1-DDWT of vertical displacements, step 4–0, Daubechies 6, detail 1, N – numbers of measurements

Sufficient transformation accuracy can be observed already at 32 numbers of measurements
(Fig. 8) for the same intensity of damage, using only the signal from the defective structure.

Fig. 8. 1-D DWT of vertical displacements, step 4, Daubechies 8, detail 1, N – numbers of measurements
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5.1.2. Direct DWT application

As part of this example, an initial random analysis of the solution will be performed. To
begin with, it was assumed that Young’s modulus would play the role of a random variable. The
values of this parameter change according to the change in the non-dimensional coefficient δ
and together with the corresponding displacements measured at the node placed adjacent to the
section of the lower chord where Young’s modulus changes are listed in Table 4. The number
of trials for the MCS approach is 100 000.

Table 4. Assumed variability of Young’s modulus

δ 0.75 0.8 0.85 0.9 0.95 1.0

E [GPa] 157.5 168.0 178.5 189.0 199.5 210.0

w(E) [mm] 3.44429 3.44261 3.44113 3.43981 3.43863 3.43757

δ 1.05 1.1 1.15 1.2 1.25 –

E [GPa] 220.5 231.0 241.5 252.0 262.5 –

w(E) [mm] 3.43660 3.43573 3.43493 3.4342 3.43352 –

Fig. 9. Expected value, coefficient of variation, skewness, and kurtosis of the displacement at selected
truss node while randomizing steel Young modulus
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The curve fitting according to the LSM procedure is given as the polynomial of the
third-degree

w(E) = 3.53279132632622 − 0.00110581831515918 · E+(5.2)

+ 4.49026891793334 · 10−6 · E2 + 6.57599837331859 · 10−9 · E3.

The expected value E(E) coefficient of variation α(E), skewness β(E), and kurtosis κ(E)
have been presented all in turn in Fig. 9 as the functions of the input randommodulus coefficient
of variation. It is seen that randomization of this parameter causes negligible uncertainty of the
selected displacement, so it is expected that higher order statistics diverge from 0 for increasing
coefficient of variation. The resulting PDF of the given displacement is remarkably different
from the Gaussian distribution curve. Nevertheless, a coincidence of all three probabilistic
methods is almost perfect in each case, so that they can be used alternatively depending upon
the computer power and software availability.

5.2. The truss girder modeled by shell elements

In this example, the shell model of a truss was used. The single truss girder shown in
Fig. 10 is analyzed. The height of the truss is 2 m, and the span is 24 m. The upper and lower
chords are made of steel hot-rolled profiles, i.e., thin-walled square hollow sections SHS
140×140×5 mm and SHS 120×120×4 mm. The diagonals are made of a SHS 90×90×5 mm,
SHS 60×60×5 mm and SHS 50×50×5 mm. The most unfavorable combination of loads was
selected for analysis. As in the previous example, the set of permanent and varying loads acting
were included. Typical four-node finite elements with five degrees of freedom per node (with
two in-plane translational displacements, translational displacement perpendicular to the plane,

Fig. 10. Analysed truss girder with location of the damage of cross-section

Fig. 11. The crack at the lower chord of the truss and line with discrete points to record the data
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and two independent slopes) will be applied. The analysis by applying typical shell elements
will also be considered to estimate the structure’s response to a propagating crack. The number
of finite elements is 36354.

5.2.1. Direct DWT application

In this example the damage will occur as a crack propagating a) vertically and b) horizontally
in the lower chord of the truss structure. For the DWT the signal of vertical displacement
measured in discrete points of the lower chord has been taken into consideration. The results
of the conducted signal decomposition for step 4, namely the intensity of the crack 4.2 mm
in both directions are presented in Figs. 12 and 13. The defect was properly localized (high
peak) both when analyzing the difference of the signals from the damaged and undamaged
structure (Fig. 12), as well as only the signal from the damaged truss with a significant reduction
of measurement points (see Fig. 13).

Fig. 12. 1-D DWT of vertical displacements, step 4–0, crack, Daubechies 6, detail 1, N – numbers
of measurements

A sufficient transformation accuracy can be observed already at 32 numbers of measure-
ments (cf. Fig. 13).

Fig. 13. 1-D DWT of vertical displacements, step 4, Daubechies 8, detail 1, N – numbers of measurements
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5.2.2. Random analysis
In this example the damage will occur as a crack propagating in a vertical direction and the

damage occurs between the nodes indicated in Fig. 11. Similarly as above, the response curve
fitting is needed and created using eleven discrete points steps. The relationships between the
damage propagation coordinate and the vertical displacement at a selected point of the girder
are shown in Table 5.

Table 5. Vertical crack propagation; vertical coordinate and the vertical displacement

sv [mm] 3.6 4.2 4.8 5.4 6.0 6.6

w(sv) [mm] 47.892 47.982 48.105 48.287 48.484 48.743

sv [mm] 7.2 7.8 8.4 9.0 9.6 –

w(sv) [mm] 49.098 49.57 50.103 50.815 51.765 –

For vertical crack propagation, similarly as in the previous example the curve fitting is
given as the polynomial of the third degree, where the polynomial was determined for the axis
of vertical displacements directed upwards (according to the coordinate system used in the
calculation program)

w(sv) = −46.1403543123539 − 0.953728308728512 · sv+(5.3)

+ 0.186485042735074 · s2
v − 0.0154060188782405 · s3

v

The results obtained for the first two probabilistic moments are shown in Fig. 14 and a very
good convergence of the values of the two first probabilistic moments obtained using the
SAM, SPT, and MCS methods can be observed even for higher values of the input coefficient
of variation, which never happen in engineering practice. The negligible character of this
uncertainty type is quite clear from the right graph below.

Fig. 14. Expected value and coefficient of variation of the vertical displacement at selected truss node
while randomizing vertical crack propagation
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5.2.3. Uncertainty in the given wavelet coefficients

Finally, the value of the vertical displacement expressed by the wavelet function determined
at a point belonging to the damaged area was also randomized. Similarly, as above, the curve
fitting is given as the polynomial of the third-degree polynomial

w(sv) = −0.0356604195804185 + 0.02206824009324 · sv−(5.4)

− 0.00419800569800572 · s2
v + 0.000346358888025557 · s3

v

The obtained results for the first two probability moments are shown in Fig. 15. Also here,
a very good convergence of the results obtained using three different random methods was
observed. The most important research finding is that these wavelet coefficients are extremely
important in this analysis, because the output uncertainty in the vertical displacements are
three times larger than the corresponding input randomness.

Fig. 15. Expected value and coefficient of variation of the vertical displacement transformed by DWT
at selected truss node while randomizing vertical crack propagation

5.3. The I-section steel girder modeled by shell finite elements

In the following analysis, the steel girder with a weakening in the form of scratching was
analyzed. The single steel girder with the location of the damage in Fig. 16 is presented. The
height of the girder is variable (from 0.6 m to 1.0 m), and the span is 24 m. As in previous
examples, the most unfavorable combination of loads was selected. The number finite shell
elements is 13013.

Fig. 16. Analyzed girder with location of the damage of cross-section
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5.3.1. Random analysis
In this case, the crack will develop horizontally. Damage occurs between nodes indicated

in Fig. 17. Similar to the previous example the response curve fitting is created based on eleven
discrete points steps. The relationships between the damage propagation coordinate and the
horizontal displacement at a selected point of the girder are shown in Table 6.

Fig. 17. Weakening in the form of a crack propagation

Table 6. Damage propagation. Horizontal coordinate and the horizontal displacement

sh [mm] 4.70 5.64 6.58 7.52 8.46 9.40

w(sh) [mm] 3.39141 3.39146 3.39152 3.39158 3.39164 3.39171

sh [mm] 10.34 11.28 12.22 13.16 14.10 –

w(sh) [mm] 3.39178 3.39185 3.39192 3.392 3.39208 –

For horizontal crack propagation, the same as before, the curve fitting is given as the
polynomial of the third degree, where the polynomial was determined for the axis of vertical
displacements directed upwards (according to the coordinate system used in the calculation
program).

w(sh) = −3.39119539627037 − 0.00350497611230616 · sh−(5.5)

− 0.0232150526299201 · s2
h + 0.0257259004967464 · s3

h

The results of calculations for the first two probability moments are shown in Fig. 18.
A very good convergence of the results obtained using the three random methods can be

observed for the first three random moments. During random analysis, the probabilistic entropy
may be determined, and based on it, a measure of reliability according to the Bhattacharyya
proposition [23,24]. These relations as a function of the input coefficient of variance are shown
in Fig. 19. Typically for the First Order Reliability Method (FORM) analysis, the reliability
index numerical values exponentially decay while increasing of the input uncertainty level of
the horizontal damage parameter. It is also seen that the results coming from both stochastic
perturbation method and the semi-analytical approach are almost equal to each other, which
confirms wide applicability of the generalized iterative perturbation method, whose application
is demonstrated in this work. Additionally, one notices that the SPT computations return
slightly smaller numerical values, which means that they are less favourable while assessing
reliability of the truss; therefore, they would be recommended.



WAVELET-BASED STOCHASTIC FINITE ELEMENT ANALYSIS OF STEEL GIRDERS 239

Fig. 18. Expected value and coefficient of variation of the horizontal displacement at selected truss node
while randomizing vertical crack propagation

Fig. 19. The probabilistic relative entropy safety measure for the random distribution of the horizontal
damage distribution

6. Concluding remarks

This paper presents an analysis of structural damage detection using discrete wavelet
transform. The structural response signal is subjected to wavelet transformation in the form of,
for example, a discrete set of displacements determined at selected points of the structure – in this
case, finite element nodes. Application of 1-D Discrete Wavelet Transform (DWT) allowed for
clear localization of existing damage. The set of Daubechies type wavelet functions has been
used. The basis for obtaining the structure’s response signal is a numerical analysis using the
FEM approach. The present work has also been extended to the additional studies covering
the application of three probabilistic approaches: the semi-analytical (SAM), perturbation-
based (SPT), and Monte-Carlo simulation technique (MCS) and also to define and calculate
reliability measures based on the relative entropy H according to the Bhattacharyya theory.
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This approach allows you to obtain a solution in a certain random interval determined by
the coefficient of variation of the argument. A very good convergence of the results obtained
by these three methods can be observed. The reliability measures show that their values are
decreasing deeply with an increasing value of the coefficient of variance of the random variable.
The need to use a large number of trials in Monte Carlo simulation makes this method the most
time-consuming one, but an increase in the precision for higher-order statistics is relatively small
and not necessary for most engineering analyses. The semi-analytical approach seems to be
the most adequate due to its simplicity and reasonable computation time for random numerical
simulations of structural mechanics tasks. Taking into account particular numerical values
of the resulting uncertainties in the Serviceability Limit State (SLS) it has been demonstrated
that the vertical crack is the decisive parameter for the given truss reliability as its CoV reaches
maximum value for the same input statistical scattering of all tested parameters.
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Stochastyczna analiza falkowa dźwigarów kratowych metodą elementów
skończonych

Słowa kluczowe: dźwigary kratowe, stochastyczna metoda elementów skończonych, wykrywanie
uszkodzeń, dyskretna transformacja falkowa

Streszczenie:

W artykule przedstawiono problematykę wykrywania uszkodzeń dźwigarów stalowych.
Rolę zmiennych mierzonych pełnią przemieszczenia statyczne w wybranym punkcie kon-
strukcji. Strukturalna dekompozycja sygnału odpowiedzi odbywa się zgodnie z algorytmem
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piramidy Mallata, który służy do wykonywania dyskretnej transformaty falkowej (DWT).
Procedura ta pozwala dość dobrze określić lokalizację uszkodzeń konstrukcji. Geometria
i umiejscowienie wadliwej części konstrukcji może mieć charakter losowy. Można założyć,
że procesy losowe zachodzące w szeroko rozumianej mechanice konstrukcji mają charakter
gaussowski. Pierwsze cztery momenty losowe szacowane są za pomocą trzech niezależnych
metod: pół-analitycznej, perturbacyjnej i symulacji Monte-Carlo. Zastosowanie matematycz-
nego aparatu stochastycznego do klasycznej (deterministycznej) analizy statyki konstrukcji
umożliwia oszacowanie miar niezawodności analizowanego dźwigara stalowego.
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