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Research paper

Improved SOM algorithm for damage characterization
based on visual sensing

Hongtao Zhu1, Shuyun Guo2

Abstract: In the field of concrete structure health monitoring, accurately and swiftly identifying damage
characteristics stands as a pivotal task. To enhance the accuracy and efficiency of concrete damage
identification, this research proposes an improved Self-Organizing Map algorithm based on visual sensing.
By optimizing feature extraction and representation methods, introducing novel learning strategies, and
incorporating spatial attention mechanisms, the model becomes adept at capturing and identifying concrete
damage features more effectively. Additionally, employing stochastic gradient descent as an optimization
algorithm enhances the model training efficiency. Experimental results showcase that the model exhibits a
detection time of merely 0.8 seconds, while demonstrating outstanding fitting and clustering performance,
achieving an actual accuracy of 98.2%. Compared to methods based on digital image monitoring and deep
learning detection, it shows an improvement of 12.7% and 31.8%, respectively. The proposed enhanced
model significantly augments the accuracy and efficiency of concrete damage identification, providing
an effective solution for the health monitoring of concrete structures, particularly in scenarios requiring
large-scale and real-time monitoring. This advancement elevates the practicality and convenience of concrete
damage detection, propelling progress in the field of building safety.
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1. Introduction

In engineering practice, concrete, as a widely utilized construction material, holds
paramount importance in terms of safety and durability [1, 2]. With the increasing com-
plexity of engineering structures and the harshness of operating environments, the development
of concrete damage identification and detection technologies has become an urgent necessity [3].
However, in the current concrete damage identification, there is a lack of detectionmethods from
the computer perspective, and the detection accuracy and efficiency need to be improved [4].
To address the issue of concrete damage identification and enhance its detection accuracy and
efficiency, this study utilizes Deep Convolutional Neural Networks (DCNNs) combined with
an attention mechanism for image preprocessing to extract crucial features related to concrete
damage. Subsequently, a Self-Organizing Map (SOM) algorithm coupled with Support Vector
Machines (SVMs) is employed for training, leveraging machine learning to enhance the preci-
sion of concrete damage identification. In terms of innovation, this research combines DCNNs
with an attention mechanism, proposing a novel image preprocessing method. Concurrently,
the integration of SOM with SVM constructs a novel model for concrete damage identification.
This model can handle large-scale concrete image data while pinpointing minute damages
within concrete structures. In terms of contributions and significance, the outcomes of this study
are poised to enhance the safety and durability of concrete structures. Furthermore, they can
offer scientific foundations for the design, construction, and maintenance of concrete structures,
exerting a profound impact on the construction industry. Simultaneously, the methods and
models developed in this study can be applied and extended to other domains, such as damage
identification in metallic materials and monitoring soil erosion, promising extensive applica-
tions. In conclusion, this research aims to achieve efficient identification of concrete damage,
offering new research insights and experimental methods for related fields. Moreover, it aspires
to witness the widespread application of its findings, propelling technological advancements
and societal development in relevant domains. The study is divided into four parts: a summary
of computer vision and structural damage identification, implementation of the proposed
methods, validation and testing of the methods, and a comprehensive conclusion of the research.

2. Related works

Computer vision is a discipline that encompasses both theory and technology, aiming to
enable computers to “see” and understand their surroundings by mimicking the capabilities of
human vision. It involves the comprehension and analysis of image and video data [5]. The
primary objective is to empower computers to recognize and understand images or videos
from the real world, extracting valuable information from them. The applications of computer
vision are diverse and include image recognition, object detection, image segmentation, 3D
model reconstruction, autonomous vehicles, medical image analysis, augmented reality, among
others. Sheykhmousa et al. conducted a meta-analysis of the current state of research on remote
sensing image classification. The study demonstrated the excellent performance of the random
forest algorithm and SVM in remote sensing image recognition [6]. Zhu et al. addressed
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challenges in image label data recognition, proposing the use of a deep subdomain adaptation
network. Experimental results indicated significant improvements in object recognition and
digital classification tasks using this model [7]. Sun et al. tackled the difficulties in designing
convolutional neural network structures for image classification tasks. They introduced a
method that utilizes genetic algorithms for automatic structure design. The research validated
the algorithm using widely adopted image classification benchmark datasets, showing its
superiority in terms of classification accuracy, parameter count, and computational resource
efficiency compared to existing methods [8].

In the field of engineering, damage identification is typically a part of structural health
monitoring, used to assess the safety and reliability of structures such as buildings, bridges,
aircraft, and roads. Damage identification technologies offer timely alerts to prevent structural
failures and catastrophic accidents. Techniques for damage identification include visual
detection, ultrasonic testing, electronic interference measurements, and infrared thermography.
In recent years, with the development of computer science and artificial intelligence, the
application of computer vision and machine learning technologies in the field of damage
identification has become increasingly widespread. Aiming at the accurate rate of concrete
damage detection, Yuan et al. proposed an intelligent inspection robot with deep stereoscopic
vision based on the three-dimensional perspective, and the research proved that it could
effectively identify and quantify damage [9]. Aiming at the problem of damage detection
of bent concrete, Burud and Kishen proposed a wavelet entropy method using acoustic
emission waveform, and proved that this method can effectively identify damage [10]. Zhang
et al. proposed an improved deep network algorithm to improve the accuracy of concrete
crack detection, and the research proved that the algorithm effectively improved the crack
identification accuracy [11].

In summary, the current field of concrete damage identification still holds significant
potential for development, with a need for further application of new technologies. Consequently,
a concrete damage characteristic recognition model based on an improved SOM algorithm
was proposed for research. Leveraging the power of deep learning and machine learning,
this method not only enhances accuracy in identification but also strengthens the ability to
handle complex data. Additionally, improving the effective handling of large-scale data and
enhancing computational efficiency are crucial directions for future research. Anticipating the
demonstration of greater potential in concrete damage identification and the emergence of
broader applications, including in the recognition of damage in other materials and even in
medical image analysis.

3. The construction of concrete damage characteristics
recognition model

The study initially utilizes a DCNNs and attention mechanism to extract key features of
concrete damage, aiming to preprocess concrete damage images. Subsequently, employing
the SOM algorithm combined with the SVM model facilitates the model training, ultimately
achieving recognition of concrete damage characteristics.
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3.1. Preprocessing of concrete damage images

To enable computers to handle concrete damage issues, it is essential to abstractly address
the concrete damage problem. Specifically, the concrete damage detection problem can be
formalized as shown in Formula (3.1).

(3.1) y = δ (w ∗ x + b)

In Formula (3.1), y represents the predicted matrix of damage detection probability. x
signifies the probability. w represents the weight matrix with values to be determined, while
b indicates the bias matrix. ∗ denotes convolution operation, and δ (·) signifies the logical
function. Within this, w and b can be represented as shown in Formula (3.2).

(3.2) y = gL (gL−1 (· · · (gl (x)))) = G (x; (w, b))

In Formula (3.2), gL represents non-linear modularized operations, L signifies the number
of layers in non-linear modularized operations, and (w, b) denotes the corresponding parameters
of the convolutional neural network. By introducing channel attention and spatial attention,
Formula (3.2) can be rewritten as in Formula (3.3).

(3.3)

{
y = g′L

(
g′
L−1

(
· · ·

(
g′
l
(x)

)))
= G′ (x; (w, b))

g′
l
(x) = gl (βl (αl (x)))

In Formula (3.3), α represents channel attention, while β signifies spatial attention. To
more effectively process concrete damage images and extract critical damage features, the
research introduces a novel preprocessing model architecture. DCNN is a robust model capable
of processing complex image data and effectively extracting meaningful features [12]. In
order to process concrete damage images more effectively and extract key damage features,
a new preprocessing model architecture is introduced. The architecture uniquely integrates
DCNNs and attention mechanisms, providing new possibilities for image preprocessing. In the
pre-processing of concrete damage images, DCNN extracts multi-scale and multi-level features
from original images through hierarchical convolution and nonlinear transformation [13]. These
characteristics can better reflect the damage status of concrete and provide strong support for
the subsequent identification task. At the same time, the introduction of attention mechanism
further enhances the preprocessing ability of the model. The attention mechanism simulates
human visual attention, so that the model pays more attention to the key parts of the image
during image processing [14]. As shown in Figure 1, this is the schematic diagram of the
proposed DCNN mixed attention mechanism image preprocessing.

To further enhance the detailed feature extraction capability of the architecture, a channel
attention module is introduced into the basic convolutional module. By incorporating the
channel attention module into the architecture, it becomes more adept at capturing microscopic
changes in concrete damage images, extracting more representative features, thereby improving
the architecture’s effectiveness in handling concrete damage images. As depicted in Figure 2,
this is the schematic diagram of the introduced effective channel attention module architecture.
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Fig. 1. Schematic diagram of image preprocessing architecture of DCNN hybrid attention mechanism

Fig. 2. Efficient channel attention module architecture diagram

The introduction of the channel attention mechanism module can to some extent strengthen
the architecture’s feature extraction capability for input images, thereby further enhancing the
overall performance of the model, with the computation detailed in Formula (3.4).

(3.4)
{
α = σS

(
Wk ∗ (P (yl−1)) + by

)
yl = α (yl−1)

In Formula (3.4), σS represents the activation function, Wk represents the convolutional
kernel, ∗ represents the convolution operation, P represents global average pooling, and by
represents the bias term. The study further introduces a spatial attention module, which mainly
includes convolutional layers, batch normalization layers, and activation function layers. The
calculations of these three layers are detailed in Formula (3.5).

(3.5)


q = σR

(
B (Wk ∗ xl−1 + bx) + B

(
Wk ∗ yl−1 + by

) )
β = σS

(
B

(
Wk ∗ q + bq

) )
yl = β (xl−1, yl−1)

In Formula (3.5), q represents the convolutional layer operation. β represents batch
normalization operation. yl represents the activation function layer operation. yl−1 represents the
input feature map. xl−1 represents the encoder feature map. σR represents the ReLU activation
function. bq and bxY represent the corresponding bias terms. In the actual computational
process, the problem of vanishing or exploding gradients often occurs in deep learning networks,
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a phenomenon particularly common during the iterative training of deep learning models. To
address this issue, the study adopts a strategy of incorporating the residual structure from
MobileNetV2. MobileNetV2 is a lightweight deep learning network known for introducing
residual and inverted residual structures to address information loss in deep networks. The
introduction of the residual structure effectively resolves the vanishing gradient problem caused
by small convolutional kernel dimensions, further enhancing the training stability and model
performance of deep learning networks. As depicted in Figure 3, the schematic diagram
illustrates the introduced residual structure.

Fig. 3. Schematic representation of the residual structure

In this architecture, binary cross-entropy loss function is chosen as the loss function,
specifically Formulated as shown in Formula (3.6).

(3.6) Lloss =
1
N

∑
i

[Pi · log (yi) + (1 − Pi) · log (1 − yi)]

In Formula (3.6), N representational sample count, Pi represents the label value, and yi
represents the predicted image value. To improve the efficiency of model training and avoid
falling into local optima, the study employs the stochastic gradient descent method as the
optimization algorithm, as outlined in Formula (3.7).

(3.7) Gradient descent = Wl + λ
∂L
∂W

In Formula (3.7), Wl denotes the weights of the layer, and λ represents the initial learning
rate. In traditional gradient descent, each iteration requires calculating the average gradient of
all samples, which can be computationally inefficient when dealing with a large number of
samples. On the other hand, stochastic gradient descent randomly selects a single sample to
compute the gradient during each iteration, significantly improving computational speed.

3.2. Construction of SOM model for concrete damage characteristics
identification

The SOM model is essentially an unsupervised learning neural network, distinguished
from other neural networks by its lack of hidden layers. The input layer receives data, while
the output layer is responsible for clustering and mapping the input data. Each neuron on
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the output layer has a fixed position during the training process, while the neuron’s weights
adjust continuously with training. The most notable feature of the SOM model is its ability to
preserve the topological structure of input data on the output layer, making it widely applicable
in areas such as clustering and visualization [15]. As shown in Figure 4, this is a schematic
diagram of the SOM model structure.

Fig. 4. Structure diagram of SOM model

The learning process of the SOMmodel mainly consists of two stages: competitive learning
and cooperative learning. In the competitive learning stage, each neuron compares itself with
the input vector, and the winner is the neuron with the closest distance to the input vector. In
the cooperative learning stage, the weights of the winning neuron and its neighboring neurons
are adjusted to be closer to the input vector [16]. When using SVM for model training, the
optimal classification hyperplane is first determined based on known training data, and then
this hyperplane is used for classifying and predicting new data. The training data may be
features extracted by the SOM model, raw data, or other processed data. By utilizing SVM, the
model’s predictive ability is enhanced while retaining the topological characteristics of the
SOM model. This allows the model to more accurately identify characteristics of concrete
damage, thereby improving the efficiency and accuracy of concrete damage identification, as
depicted in Figure 5, which illustrates the training process using SVM.

Fig. 5. Schematic diagram of SVM training model process
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In practical usage, the process involves sending a request from a lower-level machine to the
server, prompting it to input the images to be detected into the model. After completing the
detection, the results are sent back to the server, which responds to the lower-level machine,
completing the concrete crack detection process. The detailed flowchart for this process is
illustrated in Figure 6.

Fig. 6. Schematic diagram of concrete crack detection process

As shown in Figure 6, the framework flowchart of the concrete crack detection model is
presented. Upon receiving the server’s response, the lower-level machine can display the crack
detection results to the user or proceed with further processing. For instance, it may mark the
crack locations on the original image or record crack information in a database for subsequent
analysis and processing. Through this process, automated detection of concrete cracks is
achieved, improving detection efficiency and accuracy while also reducing the workload and
error rate associated with manual detection.

4. Verification and testing of concrete damage
characteristics identification model

4.1. Test environment

The study conducted validation and testing of a concrete damage identification model. The
research utilized the Concrete Crack Images for Classification (CCIC) dataset, a collaborative
effort between the National Research Council of Canada and the University of Winnipeg. This
dataset, designed for concrete crack detection and classification tasks, consists of a substantial
number of concrete surface crack images. The CCIC dataset comprises 20,000 images with
cracks and 20,000 images without cracks, all with a resolution of 227×227 pixels. To construct
the training and testing sets, 80% of the images were randomly allocated for training, while the
remaining 20% constituted the test set. To mitigate performance limitations during testing, the
study opted for a cloud server platform. The specific hardware and software configurations,
along with experimental parameter settings, are detailed in Table 1. The study further evaluated
the performance of three models: the Canny method based on digital image processing, a deep
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learning (DL) approach, and the proposed Improved Self-Organizing Map (IM-SOM) model.
Canny algorithm is mainly suitable for identifying the clear outline of cracks, which has a
certain resistance to noise and can effectively detect small and intermittent crack lines, but it is
limited for complex or low-contrast crack detection [17]. Deep learning methods can process
and identify cracks of various sizes, shapes and orientations, and adapt to different lighting and
background conditions, but their detection effect depends greatly on the training effect [18].

Table 1. Details of hardware and software configuration and experimental parameter settings

Hardware Software

Name Detail Name Detail Version

Supplier Amazon Web
Services

Operating
system Ubuntu Server 20.04 LTS

Server model
Amazon Elastic
Compute Cloud

(EC2)

Deep learning
framework TensorFlow 2.7.0

Instance type p3.2× large Python
environment Python 3.8.10

CPU Intel Xeon E5-2686
v4 (Broadwell)

Python libraries
and tools

NumPy 1.21.2

RAM 61Gb Pandas 1.3.3

MEM EBS Scikit-learn 1.0

GPU NVIDIA Tesla V100 OpenCV 4.5.3

Network
performance High Server software Gunicorn 20.1.0

Parameter setting

Name Detail Name Detail Name Detail

Input layer size 227 × 227 × 3 Optimizer
Stochastic
gradient

descent, SGD

Kernel
parameter

1/3

Learning rate 0.001 Loss function Cross-entropy
loss

SGD
learning
rate

0.01

Lot size 32 Kernel function Radial basis
function

SGD
momentum 0.9

Epoch 100 Penalty
parameter 1.0

SGD
weight
decay

0.0005
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4.2. Basic performance index test

Comprehensive performance metrics for the three models were tested, with all models
trained on the same dataset until optimal states were achieved. To minimize errors’ impact
on performance testing, each model underwent three rounds of testing. In Table 2, MAE
represents the average absolute error; MSE stands for mean square error; R2 is the coefficient
of determination; NRMSE stands for normalized root mean square error; MAPE represents
the mean absolute percentage error. The results are presented in Table 2, indicating that the
proposed method outperformed the other two models across all performance metrics.

Table 2. Multiple performance test results for three models

IM-SOM Canny DL
1 2 3 1 2 3 1 2 3

MAE 1723.457 1764.124 1822.342 1823.783 1923.435 1912.589 1997.563 2031.384 2197.589
MRMSE 2384.941 2475.329 2510.374 2867.562 2943.832 2941.925 2998.768 3074.269 3017.591

R2 0.9548 0.9653 0.9631 0.8156 0.8293 0.8940 0.6241 0.6734 0.6987
NRMSE 17.677 18.236 18.697 15.824 16.284 16.905 14.256 14.349 15.029
MAPE 13.789 13.642 14.562 12.189 12.275 12.903 11.219 10.121 11.648

The study also conducted tests on the damage detection speed and relative resource
utilization of the three models, as illustrated in Figure 7. From Figure 7(a), it is evident that
IM-SOM exhibited superior detection speed, with the best detection time recorded at 0.8
seconds. Figure 7(b) demonstrates that IM-SOM showcased the best resource utilization,
reducing resource consumption by 11.2% and 47.6% compared to Canny and DL, respectively.

(a) Detecting time (b) Resource occupancy

Fig. 7. The detection speed and resource occupancy test results of the three models

Testing was conducted on the fitting degree of damage detection for three models to assess
their practicality and usability. The test results are shown in Figure 8. The damage grade is used
to assess the severity of the crack, and the development trend is used to assess the future safety
of the crack. Figure 8(a) represents the test for the fitting degree of damage prediction by the
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models, indicating that the proposedmethod from the research institute has the highest matching
degree with real-world scenarios. As shown in Figure 8(b), the test for its ability to predict
damage development reveals that the proposed method possesses the optimal fitting degree.

(a) Damage grade (b) Damage trend

Fig. 8. Damage detection fitting test of three models

The clustering effects of the threemodels were tested, and the results are depicted in Figure 9.
The different symbols in Figure 9 indicate different types of concrete cracks. From Figure 9, it
is evident that the method proposed by the research institute exhibits the best clustering effect
for predicting concrete cracks, allowing more precise detection of concrete damage.

(a) The clustering results of IM-SOM (b) The clustering results of Canny

(c) The clustering results of DL

Fig. 9. The clustering effect test of three models
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4.3. Practical application test

The practical image prediction capabilities of the three models were tested, and the results
are presented in Table 3. The actual/predicted quantity mainly refers to the actual crack rating
and the predicted crack rating. From Table 3, it can be observed that the IM-SOM proposed by
the research institute has the best detection accuracy, achieving an actual accuracy of 98.2%, a
12.7% improvement over Canny, and a 31.8% improvement over DL.

Table 3. Actual damage detection results of three models

Graphic Concrete
damage type

Actual
quantity

Predicted quantity
IM-SOM Canny DL

1
Crack 2 2 1 1

Honeycomb 4 4 3 2
Hole 1 1 0 1

2
Crack 1 1 0 2

Honeycomb 0 1 1 1
Hole 3 3 2 3

3
Crack 0 0 1 0

Honeycomb 2 2 1 2
Hole 1 1 1 1

Furthermore, YOVO algorithm [19] and U-Net crack detection method [20] are introduced,
and a concrete crack image is selected to detect it, so as to evaluate the practical application
effect of the research algorithm. The test results are shown in Figure 10. As can be seen from
Figure 10, the proposed method has the best concrete crack detection effect, which can not
only detect large obvious cracks, but also realize the accurate detection of minor cracks.

(a) IM-SOM (b) Canny (c) DL

(d) YOLO (e) U-Net
Fig. 10. Test of concrete crack detection effect of five models
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In conclusion, the proposed IM-SOM is more effective in detecting concrete damage.
Through improvements and optimizations to the SOM algorithm, Im-SOM demonstrates high
performance in accuracy, efficiency, and practicality in concrete damage detection. Experimental
results also indicate its potential application in the field of concrete damage detection.

5. Conclusions
In the field of health monitoring for concrete structures, accurate identification of damage

characteristics is crucial. To enhance the accuracy and efficiency of existing methods in concrete
damage identification, the research proposes an improved SOM algorithm based on visual
sensing. Experimental results demonstrate the excellent performance of this method in concrete
damage identification. Specifically, the optimal detection time is 0.8 seconds, with the best
resource utilization performance, reducing resource usage by 11.2% and 47.6% compared to
Canny andDL, respectively. Themodel shows excellent fitting degree and clustering effects. The
actual accuracy reaches 98.2%, a 12.7% improvement over Canny and a 31.8% improvement
over DL. The research not only enhances the accuracy of concrete damage identification
but also improves detection efficiency. This is of significant practical value for the health
monitoring of concrete structures, especially in large-scale and real-time monitoring scenarios.
However, the research model mainly focuses on identifying concrete damage characteristics
such as cracks, leaving room for further study on other types of damage characteristics, such as
spalling. Future research should strive to improve the model’s recognition of various concrete
damage features while further optimizing its performance and accuracy.
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