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Research paper

The influence of the accuracy of reproducing the uniaxial
tensile test of mild steel in the H–M plasticity model
on the behaviour of a perforated thin walled shell

subjected to compression

Andrzej Piotrowski1, Marcin Gajewski2, Stanisław Jemioło3,
Cezary Ajdukiewicz4

Abstract: The article describes the impact of modeling the plasticity constitutive relationship on the buckling
of a short section of a perforated thin-walled steel bar with an open cross-section (modeled as a perforated
shell) subjected to compression, being one of the elements of a high-storage system. Numerical calculations
were performed in the ABAQUS/Standard program with application of the elasto-plasticity theory of large
deformations with additive decomposition of the logarithmic strain tensor and taking into account the
nonlinear isotropic or kinematic strain hardening models. The isotropic nature of the material was considered
and the plastic flow law associated with the Huber-Mises plasticity condition was assumed. In the elasticity
range, linear characteristics of the material was assumed, while in the plasticity range, the shape of the
uniaxial strain hardening curve was described as piecewise linear approximation of plastic strain-stress
graphs obtained from uniaxial tensile tests. The 24 sets of material data obtained on the basis of experimental
tests were analyzed and the influence of differences in the values of material parameters were described
(in tests carried out on samples cut from the modeled bars, large differences were found in the values
of material parameters and the shape of uniaxial tension graphs). Also the accuracy of strain hardening
modeling (the number of sections assumed in the model piecewise linear) on the calculated bearing capacity
force value was considered and evaluated.
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1. Introduction

The issues of global and local stability of thin-walled bars or shell elements are very
important from the engineering point of view [1,2]. Solutions that use thin-walled elements
(e.g. thin-walled bars) or thin-walled structures are justified for both economic and strength
reasons. The theory of thin-walled bars is quite well developed, and the solutions to stability
problems take well into account the nature of the expected solutions [3,4], i.e. flexural buckling,
flexural-torsion buckling, etc. However, these solutions are insufficient for elements with
relatively small slenderness [5], because then the phenomenon of local loss of stability of
the cross-section walls in the elastic range or the phenomenon of elasto-plastic buckling is
highlighted [6, 7]. It can be concluded that in such situations the analyzed compression bar
should be defined as a shell [8–11], and constitutive modeling should take into account not
only elastic but also plastic material properties [8–10,12–14].

The element of the high storage system analyzed in this work is a thin-walled steel perforated
bar [15–17] (technological/assembly holes), which introduces significant localization of stress
and strain fields (sharp corners of holes) and even forces the application of the elasto-
plasticity theory. By conducting experimental tests on the compression of this type of
elements [6, 10, 11, 18–21], it can be noticed that after exceeding the critical force (bearing
capacity), the values of displacements and local rotations in the loaded element increase rapidly,
which in turn leads to the need to apply the theory of large deformations.

The application of the theory of elasto-plasticity of large deformations and the treatment
of a thin-walled perforated bar as a perforated shell means the need to conduct numerical
calculations – the ABAQUS [22] program was used in this work. The theory of elasto-
plasticity of large deformations available in the program for isotropic metals with additive
decomposition of the logarithmic strain tensor, flow law associated with the Huber–Mises
plasticity condition and nonlinear isotropic or kinematic strain hardening were used. Among
the strain hardening options available in the program, an uniaxial, piecewise linear model
was selected, based on data from a uniaxial tensile test. In the elastic range, Hooke’s linear
relationship was adopted.

In the conducted experimental compression tests of the described bars [6,10,11,20] and espe-
cially in uniaxial tensile tests of samples cut from them, large differences were noticed between
the results obtained for samples obtained from individual, theoretically identical, elements.

The aim of this article is to assess the impact of the observed differences in steel prop-
erties and the method of describing its elastic-plastic properties on the obtained critical
forces (interpreted as forces corresponding to the ultimate compressive load capacity) in
the static compression task of a selected thin-walled profile. In accordance with the stan-
dard for steel structures [23, 24] the simplified modeling of material properties adopted in
this article is allowed, and thanks to the results presented below, it is possible to qualita-
tively and quantitatively assess the impact of these simplifications on the predictions of the
computational model.
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2. Description of the analysed problem

Perforated shells corresponding to short sections of a thin-walled steel bars constituting
an element of a high storage system are analyzed. The cross-section of these bars is open and
resembles a rectangular Greek letter Ω without lower horizontal lines and slightly dented at
the top. This type of the cross-section was obtained by cold bending of steel sheets [25]. Due
to the manufacturer’s failure to maintain a high quality of the product, the steel properties
vary significantly between individual elements [11]. The bars are equipped with 4 rows of
symmetrically arranged holes running along their entire length and used to attach other storage
elements. The rows on the open side of the cross-section (in other words, close to its free
ends) consist of 6.8 mm diameter circular holes, while the rows on the closed side of the
cross-section (on its spine) consist of alternating circular and trapezoidal holes with a maximum
width of approximately 16 mm. The difference in shape results from different applications
within the storage system – smaller holes are used to attach trusses, and larger ones are used
to attach beams.

Sections of lengths 50, 100, 150, 200, 250, 300, 400 and 500 mm were cut from the
described rods and prepared for experimental tests [6, 18, 19, 26], and such lengths were also
assumed in the numerical calculations described in this article. The geometry of the analyzed
shells is shown in Fig. 1.

Fig. 1. Dimensions and an exemplary mesh for a two hundred millimeter shell (in mm)

3. Material modelling

3.1. Constitutive model

The issue was formulated within the framework of the elastic-plastic theory of large
deformations with additive decomposition of the strain tensor ε = V into parts: plastic
εp = ln Vp and elastic εe = ln Ve, which is available in the ABAQUS program, cf. [27–29].
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We determine the elastic part of strains based on Hooke’s relation for isotropic materials:

(3.1) εe = −
ν

E
(trσ)I +

1 + ν
E

σ

where E is Young’s modulus and ν is Poisson’s ratio. However, it is not possible to determine
a direct relationship to the plastic part in the case of the plastic flow theory. Then the plastic
flow function is used, which determines the plastic strain rate tensor Ûεp after the material
reaches the plastic state. The relationship on the plastic part of strain postulated in the form of
the flow law associated with the plasticity condition f has the form:

(3.2) Ûεp = λ
∂ f
∂σ

����
σ

= σT , λ ≥ 0

where f = 0 defines the yield condition in the stress state space. For f ≤ 0 the material is
in elastic state, which corresponds to Ûεp = 0 (i.e. plastic multiplier λ = 0). When the stress
condition reaches the condition f = 0, plastic deformations occur in the body, and therefore
the stress state is determined by the plasticity condition. The plastic strain rate tensor is defined
according to the normal to the yield surface. In order for the surface f to uniquely define
the transition to the plastic state, the function f must be a convex function in relation to σ.
If short-term and rapidly changing loads are omitted, the assumption is often made that the
plastic part of the strain increase is incompressible, i.e. tr Ûεp = 0. Therefore, in materials
meeting this condition, permanent deformations are assumed to be deviatoric, which results
in the function f (σ) is not dependent on the trace of the stress tensor (cf. Huber–Mises,
Coulomb–Treska and other plasticity conditions [30, 31]). To describe the plastic properties of
steel, the Huber-Mises plasticity condition with isotropic, kinematic or mixed strain hardening
was adopted. The Huber–Mises failure criteria equation with mixed strain hardening can be
written in the following form:

(3.3) F(σ, ε̄pl) = f (σ) − σ0(ε̄pl)

The yield condition is expressed as:

(3.4) f (σ) =

√
2
3
(s − α) · (s − α)

where s = σ − 1
3 trσ is a deviatoric part of the stress tensor, α is the translation tensor in the

deviatoric plane of the plasticity condition (in fact it is a deviator tensor, i.e.tr α = 0), ε̄pl stands
for equivalent plastic strains, σ0(ε̄pl) is a function of the stress in the uniaxial tensile test, and
the dot indicates the full contraction of the tensors. Function σ0(ε̄pl) can be approximated
in various ways, and the impact of this approximation on the model’s predictions is, among
other things, the purpose of this article. Non-linear strain hardening function σ0(ε̄pl) will be
approximated in this work by a piecewise linear function with any number of intervals, which
is one of the options available in the ABAQUS program [32].

The constitutive model should be supplemented with a kinematic equation for the tensor
increment α, for example in the form like in [33]:

(3.5) Ûα =
C
σ0 (σ − α)

Û̄εpl − γα Û̄εpl
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where C and γ are strain hardening parameters usually determined from cyclic tests. If we
assume in the model C = 0 and γ = 0, then we obtain a model with isotropic strain hardening
described by function (3.5). If, in turn, we assume Q = 0, then we will get a model with
kinematic strain hardening [34].

3.2. Material data

A total of 24material data sets were analyzed, including 16material data sets generated from
four different tensile tests and 8 material data sets generated from the maximum and minimum
values of elastic modulus, yield stress and tensile strength calculated from thirteen different
tensile tests (Table 1. It should be recalled here that for calculations using the large strains
theory, it is necessary to convert engineering strains and stresses into logarithmic ones [34] and
model the hardening curve in piecewise-linear form. During the tests, heterogeneity of steel
and large differences in parameters between samples cut from different, assumedly identical,
elements were noticed.

Table 1. Material test results on 13 samples (engineering values)

Average
value

Standard
deviation

Minimum
value

Maximum
value

E [GPa] 198 25 161 235

RH [MPa] 352 37 283 403

Rpl [MPa] 431 18 402 458

Rm [MPa] 511 13 486 529

Sixteen sets of data were obtained in this way: for each of the four selected samples,
four sets of data were created, differing in the number and location of points approximating
the stress-plastic strain curve: two precise sets, containing about 10 points, and two coarse
sets, approximating the graph with a straight line; in each of these pairs, one set took the
proportionality limit RH as its starting point, and the other set took the yield stress Rpl as its
starting point, as shown in Fig. 2 on the example of sample 1. Tensile graphs of the 4 samples
used for modeling are shown in Fig. 3.

Eight data sets were created based on extreme values of elastic modulus, yield stress, and
tensile strength obtained from conducting thirteen tensile tests. A linear stress-plastic strain
relationship was assumed from the yield point to the tensile strength, as shown in Fig. 4.
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Fig. 2. True stress – plastic strain relationships for sample 1: dotted line – experimental results, solid
line – relationship used for calculations; a) coarse approximation, beginning in Rpl (A), b) coarse
approximation, beginning in RH (B), c) fine approximation, beginning in Rpl (C), d) fine approximation,

beginning in RH (D)

Fig. 3. Tensile graphs for samples 1–4

Each set is identified by three letters, the first of which refers to the Young’s modulus, the
second to the yield point, and the third to the tensile strength, with “D” meaning the maximum
value and “M” the minimum. The data entered into the ABAQUS program are presented in
Table 2. It was assumed that the Rm value is achieved at a plastic strain of 13%.
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Fig. 4. Simplified material data sets generated from extremes

Table 2. Simplified material data sets according to extremes (logarithmic values)

Set E [GPa] Rpl [MPa] Rm [MPa]

MMM

161
403

555

MMD 605

MDM
459

555

MDD 605

DMM

235
403

555

DMD 604

DDM
459

555

DDD 604

A comparison of the results for kinematic and isotropic hardening was also made. For
this purpose, data for sample 1 with a simplified representation of the stress-plastic strain
relationship were used (only two points were used, one corresponding to the yield point and the
other to the tensile strength, in accordance with Fig. 2a). In both cases (isotropic and kinematic
hardening), exactly the same points were adopted.

4. FEM modelling

Calculations were made using the ABAQUS/Standard program [35]. An incremental
Newton-Raphson algorithm without stabilization was used. Automatic step division was
adopted, forcing the first increment by 0.01 of the whole step length equal to unity. The
calculations were carried out according to the large deformation theory (i.e. with the NLGEOM
option enabled, see [27, 36]). In some cases, it was necessary to shorten the increment, use
stabilization and the Riks algorithm, but in conditions where the Newton-Raphson algorithm
was sufficient, the Riks algorithm gave almost identical results. Displacement boundary
conditions at the compressed ends and finite elements S3 and S4R were used. These are
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general-purpose shell elements (for thick and thin shells), three- and four-node respectively,
suitable for use in large deformation theory calculations; four-node elements use reduced
integration and hourglass control (marked R). The adopted mesh used mainly quadrangular
elements, while triangular elements played an auxiliary role. An automatic mesh creation
algorithm was used. After conducting a convergence analysis, it was decided to adopt a mesh
with a typical element size of approximately 2mm (approximately 4000 elements per 5 cm of
shell length). An example mesh is shown in Fig. 1. 192 tasks were solved corresponding to all
possible combinations of the length and material data given above for isotropic hardening
and 8 tasks for kinematic hardening – a total of 200 tasks. All calculations were performed
with full end restraint and no geometrical imperfections.

5. Presentation of FEM results and their analysis

The results obtained on the basis of data defined according to Fig. 2 are shown in Figs. 5
and 6, with Fig. 5 showing exemplary equilibrium paths, and Fig. 6 showing graphs presenting
the dependence of the critical force on length. As you can easily see, on the basis of the data from
sample 1, significantly higher critical force values were obtained than from the other samples.
Taking the proportionality limit instead of the yield point as the beginning of yielding allows

Fig. 5. Equilibrium paths for a 100 mm long shell – 16 sets according to Fig. 2; a) sample 1, b) sample 2,
c) sample 3, d) sample 4



THE INFLUENCE OF THE ACCURACY OF REPRODUCING THE UNIAXIAL TENSILE TEST. . . 217

Fig. 6. Critical force-length relations – 16 sets according to Fig. 2; a) sample 1, b) sample 2, c) sample 3,
d) sample 4

for obtaining a smoother curve at the moment of buckling, closer to the experimental results.
Differences between the results obtained for precisely and roughly reproduced stress-plastic
strain curves affect the value of the critical force (impact of several percent, for more accurate
mapping results closer to those obtained in the experiment [6, 10, 11, 18–21, 26], are also
noticeable in the post-critical phase, with more accurate mapping giving higher force values,
and less accurate – lower ones. The value of the elastic modulus is, of course, most important
in the linear phase of shell compression. It should be noted here that some of the tasks could
not be calculated with the adopted algorithm parameters and it was necessary to modify the
minimum increment length, introduce stabilization or use the Riks algorithm. Sometimes this
resulted in a change in the form of buckling (Fig. 7) and outlier results of the critical force
(Fig. 6), which is possible from the theoretical point of view of the nonlinear theory of large
deformations [27], as there is no unambiguity in this theory solutions to boundary problems
even in range of the elastic properties of the material.

The results obtained on the basis of the data from Table 2 are shown in Figs. 8 and 9, with
exemplary equilibrium paths in Fig. 8 and graphs showing the dependence of the critical force
on length in Fig. 9. As you can easily see, the value of the yield point has the greatest impact
on the obtained results, the modulus of elasticity affects mainly (but not only) the linear elastic
range, and the strength affects the post-critical course. The reason why one of the results in
Fig. 9a is outlier is the change in the form of buckling, analogous to that shown in Fig. 7 in the
context of Fig. 6.
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Fig. 7. Change in the form of buckling for data according to sample 3 (Fig. 6c); a) 400 mm shell, modeling
B, b) 400 mm shell, modeling D, c) 500 mm shell, modeling B, d) 500 mm shell, modeling D

Fig. 8. Equilibrium paths – 8 sets according to Table 2; a), b) 50 mm, c), d) 150 mm



THE INFLUENCE OF THE ACCURACY OF REPRODUCING THE UNIAXIAL TENSILE TEST. . . 219

Fig. 9. Critical force-length relations – 8 sets according to Table 2

A comparison of the equilibrium paths obtained for isotropic and kinematic strengthening
for two example shell lengths is shown in Fig. 10. The differences between the obtained results
are very small and become visible only in the late post-critical phase, but they exist, whichmeans
that there are small, local unloads in the calculated shells, despite monotonic nature of the load.

Fig. 10. Isotropic (solid) and kinematic (dotted) hardening: equilibrium paths for 50mm (a) and 500mm (b)
long shell – material data according to Fig. 2a

6. Conclusions and summary
The compressed thin-walled perforated steel bars considered in this work are modeled

as elastic-plastic shells, which requires the use of the finite element method, for which the
ABAQUS programwas used. The finite element meshmust be accurate, both due to the presence
of holes with sharp corners and the expected concentrations and redistribution of plastic strains.
The meshes used contain approximately 4000 elements in a repeatable 5 cm module. In order to
determine the parameters of constitutive relations, 13 experimental uniaxial tensile tests were
performed on samples cut from the considered bars. The theory of elasto-plasticity of large
deformations available in the ABAQUS program with the Huber-Mises plasticity condition and
isotropic and kinematic hardening with additive decomposition of the logarithmic strain tensor
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into elastic and plastic parts was used. Among the nonlinear hardening description options
available in the program, a uniaxial, piecewise-linear model was selected, based on data from
a uniaxial tensile test.

Based on the results presented in this work, general and specific conclusions can be
formulated. The most important is the need to model short thin-walled perforated bars as
perforated shells and to apply the theory of elasto-plasticity of large deformations, which is also
confirmed in studies on the design and analysis of metal structures [23, 24, 37], which include
recommendations on the use the so-called geometrically and materially nonlinear theories.

The steel from which the bars are made is of low quality, and its properties vary by up to
several dozen percent between individual, supposedly identical, elements. The most important
parameters of the material model are the elastic modulus E , the yield stress Rpl and the tensile
strength Rm. The same parameters were assumed in both the isotropic and kinematic hardening
models. The value of the yield strength Rpl has the greatest decisive influence on the obtained
load-bearing capacity values and the course of the equilibrium paths, because inelastic local or
distortion buckling is dominant for short perforated bars. The value of the elastic modulus E
mainly affects the equilibrium paths, especially in the pre-critical range. The value of tensile
strength Rm is important only in the post-critical phase, with a higher value increasing the
calculated force values, and a lower one decreasing them.

Differences between the results obtained for precisely and roughly approximated stress-
plastic strain curves (piecewise linear approximation by specifying points on the curve) are
noticeable both in the load-bearing capacity values (influence of several percent) and in the
course of the equilibrium paths, especially in the post-critical phase, where more accurate
approximation gives higher force values, and less accurate one – lower ones. Taking the
proportional limit instead of the yield point as the beginning of yielding allows for obtaining
a smoother course of the curve at the moment of buckling, closer to the experimental results;
However, it should be recalled here that this approach only works in the case of monotonic loads
– in the case of unloading, it is necessary to model non-linear elasticity between RH and Rpl .
It should also be noted that the choice of the type of hardening (isotropic or kinematic) does
not affect the buckling and load-bearing capacity of the monotonically compressed shell (there
are no local unloading before buckling) and becomes important only in the late post-critical
phase, when, due to very large deformations and local rotations, local unloading occurs.

A high instability of the considered nonlinear boundary problem was noticed – the solution
results are sensitive to the adopted parameters of the numerical algorithms. It happened that
changes, e.g. in the step division, resulted in a change in the form of buckling and, as a result,
the load-bearing capacity. This is due to the similar chance of the shell buckling inward or
outward and the different buckling modes resulting from the initial direction of deformation.
It is worth noting here that in the experimental tests, due to the boundary conditions and the
occurrence of imperfections, the directions of buckling, and consequently also the values of
critical forces, were much more stable. The analysis of the influence of boundary conditions
and imperfections was presented in [18, 19, 26] – their significant impact on the calculated
load capacity (up to several dozen percent) and buckling modes was found, and the adoption
of imperfections and boundary conditions that well described the experimental conditions
allowed for good compliance of experimental and numerical results.
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Wpływ dokładności odwzorowania jednoosiowej próby rozciągania stali
miękkiej w modelu plastyczności H–M na zachowanie perforowanej

cienkościennej powłoki poddanej ściskaniu

Słowa kluczowe: MES, nośność, sprężysto-plastyczność, stateczność, pręty cienkościenne, pręty
perforowane

Streszczenie:

W artykule opisano wpływ modelowania relacji konstytutywnej plastyczności na wyboczenie podda-
nego ściskaniu krótkiego odcinka stalowego perforowanego pręta cienkościennego o przekroju otwartym
(modelowanego jako perforowana powłoka) stanowiącego jeden z elementów systemu regałów wyso-
kiego składowania. Wykonano obliczenia numeryczne w programie ABAQUS/Standard i wykorzystano
zaimplementowaną w nim teorię sprężysto-plastyczności dużych deformacji z addytywną dekompozycją
logarytmicznego tensora odkształcenia i nieliniowym wzmocnieniem izotropowym lub kinematycznym.
Założono izotropowość materiału i przyjęto prawo płynięcia stowarzyszone z warunkiem plastyczności
Hubera-Misesa. W zakresie sprężystym przyjęto liniową charakterystykę materiału, natomiast w zakresie
plastycznym przebieg jednoosiowej krzywej wzmocnienia opisano odcinkowo na podstawie wykresów
odkształcenie plastyczne – naprężenie otrzymanych z jednoosiowych prób rozciągania. Przeanalizowano
24 zestawy danych materiałowych otrzymanych na podstawie badań doświadczalnych i opisano wpływ
różnic w wartościach stałych materiałowych (w testach przeprowadzonych na próbkach wyciętych
z modelowanych prętów stwierdzono duże różnice w wartościach stałych materiałowych i charakterze wy-
kresów rozciągania) oraz dokładności modelowania wzmocnienia (przyjętej liczbie odcinków w modelu
odcinkowo liniowym) na obliczaną wartość nośności. Stal, z której wykonane są pręty, jest niskiej jakości,
a jej właściwości różnią się nawet o kilkadziesiąt procent pomiędzy poszczególnymi, w założeniu iden-
tycznymi, elementami. Najważniejszymi parametrami modelu materiału są moduł sprężystości E , granica
plastyczności Rpl oraz wytrzymałość na rozciąganie Rm. Te same parametry przyjęto zarówno w modelu
ze wzmocnieniem izotropowym, jak i kinematycznym. Największy, decydujący wpływ na otrzymane
wartości nośności i przebieg ścieżek równowagi ma wartość granicy plastyczności Rpl , gdyż dla krótkich
prętów perforowanych dominujące jest niesprężyste wyboczenie lokalne lub dystorsyjne. Wartość modułu
sprężystości E wpływa głównie na ścieżki równowagi, przede wszystkim w zakresie przedkrytycznym.
Wartość wytrzymałości na rozciąganie Rm ma znaczenie dopiero w fazie postkrytycznej, przy czym
większa jej wartość zwiększa obliczane wartości sił, a mniejsza je zmniejsza. Różnice między wynikami
otrzymanymi dla dokładnie i zgrubnie odwzorowanych krzywych naprężenie – odkształcenie plastyczne
(odwzorowanie odcinkowo liniowe przez podanie punktów na krzywej) są zauważalne zarówno w warto-
ściach nośności (wpływ rzędu kilku procent) jak i w przebiegu ścieżek równowagi, przede wszystkim
w fazie postkrytycznej, gdzie dokładniejsze odwzorowanie daje większe wartości sił, a mniej dokładne –
mniejsze. Przyjęcie jako początku uplastycznienia granicy proporcjonalności zamiast granicy plastycz-
ności pozwala na otrzymanie łagodniejszego, bliższego wynikom doświadczalnym, przebiegu krzywej
w chwili wyboczenia; należy tu jednak przypomnieć, że jest to podejście sprawdzające się wyłącznie
w przypadku obciążeń monotonicznych – w przypadku odciążeń konieczne jest modelowanie między
RH i Rpl nieliniowej sprężystości. Zauważyć również należy, że wybór rodzaju wzmocnienia (izotropowe
lub kinematyczne) nie wpływa na wyboczenie i nośność monotonicznie ściskanej powłoki (nie ma lokal-
nych odciążeń przed wyboczeniem) i zaczyna odgrywać znaczenie dopiero w późnej fazie postkrytycznej,
kiedy na skutek bardzo dużych deformacji i lokalnych obrotów pojawiają się miejscowe odciążenia.
Zauważono dużą niestabilność rozpatrywanego nieliniowego zadania brzegowego – wyniki rozwiązania
są wrażliwe na przyjęte parametry algorytmów numerycznych. Zdarzało się, że zmiany np. w podziale
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kroku skutkowały zmianą postaci wyboczenia i w efekcie nośności. Jest to spowodowane zbliżoną
szansą na wyboczenie powłoki do środka lub na zewnątrz i odmiennością wynikających z początkowego
kierunku deformacji postaci wyboczenia. Warto tutaj zauważyć, że w badaniach doświadczalnych,
z uwagi na warunki brzegowe oraz występowanie imperfekcji, kierunki wyboczenia, a w rezultacie
również wartości sił krytycznych, były zdecydowanie bardziej stabilne. Analizę wpływu warunków brze-
gowych oraz imperfekcji zaprezentowano we wcześniejszych pracach; stwierdzono ich znaczny wpływ
na obliczaną nośność (nawet do kilkudziesięciu procent) i postacie wyboczenia, przy czym przyjęcie
imperfekcji i warunków brzegowych dobrze opisujących warunki doświadczenia pozwalało uzyskać
dobrą zgodność wyników doświadczalnych z obliczeniowymi. Najważniejszym wnioskiem o charakterze
ogólnym wypływającym z przedstawionych w niniejszej pracy wyników jest konieczność modelowania
krótkich cienkościennych prętów perforowanych jako perforowanych powłok oraz zastosowania teorii
sprężysto-plastyczności dużych deformacji, co potwierdzone jest także w opracowaniach dotyczących
projektowania i analizy konstrukcji metalowych, gdzie znajdują się zalecenia o stosowaniu tzw. teorii
geometrycznie i materiałowo nieliniowych.
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