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Abstract: In many geomatics, computer vision, and computer-aided applications, coordinate transformations
are needed to transform from one coordinate system to another, especially in geodesy and photogrammetry.
In photogrammetry one of the important coordinates transformation methods used to transform photo
coordinates is the 2D affine transformation which takes into consideration the change in the differences in
scale factor in the x and y directions. In this paper, a new method for computing the 2D affine transform
parameters will be introduced, the problem of the 2D affine transform method has been solved by Gaussian
elimination with pivoting. We have derived equations by which to find transformation parameters. Geometric
transformation is a technique used to define the properties of common features between different images
using the same coordinates basis, This method can be effectively used in image processing and computer
vision to facilitate the computation process throughout eliminating the need for solving the inverse of the
matrix.
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1. Introduction

The frequent problem in Photogrammetry is converting an arbitrary (unknown) rectangular
coordinate system to another calibrated (known) rectangular coordinate system [1, 2]. In
computer vision and photogrammetry, unknown coordinates are usually selected for a series
of points, with respect to an arbitrary rectangle coordinate system [3, 4]. 2D coordinate
transformation is the process of transferring data between different coordinate systems [5, 6].

Coordinate transformations can be considered the mathematical model through which
the amount of transformation of any element can be numerically recognized by (reflecting,
rotating, translating, and changing the scale).

For the affine transformation, there are two parameters of scale factors, one in the x-
axis and the second one in the y-axis [7–10]. In photogrammetry and computer vision
frequently employ this transformation in the process of interior orientation [10, 11]. When
one two-dimensional coordinate system (arbitrary coordinate) is projected onto another
nonparallel system (calibrated coordinates) [12, 13]. This type of transformation may convert
coordinates for geodetic applications and is frequently used in photogrammetry and cadastral
surveying [14–17] and is considered one of the methods in the geometric correction in GIS
and image processing [18, 19].

The points themselves must have their known coordinates in two systems in order to
complete the procedure, the arbitrary and calibrated coordinate system, so that a number of
repeated fuctions in the x, and y coordinates are achieved. This system of functions can be
solved directly with linear and nonlinear least squares [20,21], or the transformation coefficients
can be estimated by the multiple regression coefficients computation method [22, 23].

It is challenging to estimate all six affine parameters using the traditional Radon transform
methods without iterations [24]. Hence, novel methods and approaches in this field have been
explored and suggested, such as utilizing a line integral transform that is invariant to affine
deformation to compute a 2D matrix of affine invariants are efficient [25], and an approach
based on the Radon transform is proposed to directly estimate the six affine parameters in
a novel method. Such new methods are useful for 2D affine transformation parameters, which
enhances the accuracy and efficiency.

In this research, a new approach for computing the transformation parameters is presented
which can give a fast and direct solution that can be used in computer vision and image
processing.

2. Transformation parameters

In general, there are four sets of parameters that might be involved in the coordinates
transformation:

1. Scale change “scaling”, occurs due to a change in size which might be one-dimensional,
two-dimensional, or three-dimensional.

2. Reflection this occurs in the case of coordinates transformation, from a left-hand system
to a another right-handed system and vice versa.
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3. Rotation, this occurs if the coordinates axes of the two systems are not parallel to each
other.

4. Translation, this occurs if the coordinate systems have a different origin [2].

2.1. Two-dimensional conformal coordinate transformation

The conformal transformation applied to the figures or shapes does not change their true
form after applying transformation. To apply 2D conformal transformation, it is indispensable to
know the coordinates of two points in at least two systems. The accuracy of the transformation
is improved, if the points are chosen as much as possible far from each other [26, 27].

With reference to the Fig. 1.

Fig. 1. Coordinate systems rotated by an angle θ

We have:

x = D cos (β − θ)(2.1)
y = D sin (β − θ)(2.2)

x = D cos β cos θ + D sin β sin θ(2.3)
y = D sin β cos θ − D cos β sin θ(2.4)

x = D cos β(2.5)
y = D sin β(2.6)
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Substitute Eq. 2.5 and Eq. 2.6 into Eq. 2.3 Eq. and 2.4 we get:

x = x cos θ + y sin θ(2.7)
y = y cos θ − x sin θ(2.8)

Or in matrix form:

(2.9)

[
x

y

]
=

[
cos θ sin θ
− sin θ cos θ

] [
x

y

]
Or:

(2.10) X = M X

Regarding that M = Rotation matrix = Orthogonal matrix:

MT = M−1(2.11)

∴ X = MT X(2.12)

After adding the scale factor:

(2.13)

[
x

y

]
= s

[
cos θ −sinθ

sin θ cos θ

] [
x

y

]
And after adding the translation:

(2.14)

[
x

y

]
= s

[
cos θ −sinθ

sin θ cos θ

] [
x

y

]
+

[
T x

T y

]
If a = s cos θ and b = s sin θ we get:[

x

y

]
=

[
a −b

b a

] [
x

y

]
+

[
T x

T y

]
(2.15)

x = ax − by + T x, y = bx + ay + T y(2.16)

To find the rotation angle and the scale factor:

tan θ =
b
a

(2.17)

s =
√

a2 + b2(2.18)

2.2. Two-dimensional 2D affine transformation

The transformation of 2D affine coordinates is only a small change of the 2D conformal or
similarity transformation. Affine transformation is the existing relationship (or conversion to
be made) between the 2D different coordinate systems at the origin point and in the direction
of the axes and the scale. The scale is constant for each axis but not fixed for both axes (it has
two scales). The two-dimensional affine transformation has five transformation parameters:
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– 2 scales (SX, SY )
– 2 translations (TX,TY )
– 1 rotation θ.
Recall Eq. 2.14 and add 2 scales (SX, SY ).

(2.19)

[
x

y

]
=

[
cos θ − sin θ
sin θ cos θ

] [
Sx 0
0 Sy

] [
x

y

]
+

[
T x

T y

]
If a1 = Sx cos θ, b1 = Sy sin θ, ao = T x, a2 = Sx sin θ, b2 = Sy cos θ and ao = T x,

bo = T y we get:

(2.20)

[
x

y

]
=

[
a1 −a2

b1 b2

] [
x

y

]
+

[
ao
bo

]
Or

(2.21) x = ao + a1x − a2
y = bo + b1x + b2y

3. Gaussian elimination with pivoting

In linear algebra, the Gaussian elimination with pivoting is a technique used to solve the
inverse of the matrix. The mathematical derivation method that we implemented in this paper
is presented in this section. Let’s consider the following general linear system of equations.

(3.1)


a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2
...

an1x1 + an2x2 + . . . + annxn = bn

From these equations, three matrices can be extracted:

(3.2) A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

...

an1 an2 . . . ann


, X =


x1

x2
...

xn


, B =


b1

b2
...

bn


In general, the solution of any system of linear equations having a form similar to the above

form (number of equations = number of unknown) can be done by the triangular factorizations
with Gauss elimination. The problem is to find the values of X and to solve it the following
steps must be considered.
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Given the n(n + 1) matrix, W contains the matrix A of order n in its first column and the
vector b in its last column.

(3.3) W =


w11 w12 . . . w1n w1,n+1

w21 w22 . . . w2n w2,n+1
...

...
...

...
...

wn1 wn2 . . . wnn wn,n+1


=


a11 a12 . . . a1n b1

a21 a22 . . . a2n b2
...

...
...

...
...

an1 an2 . . . ann bn


Initialize the pivoting n-vector P

Pi = i, i = 1, . . . , n

(3.4) P =


1
2
...

n


The triangular factorizations with Gauss elimination can be done in two steps, step one

(factorization) and step two (forward elimination and backward elimination).
In step one, the application of factorization applies only to the coefficients of the matrix

(A) by eliminating of x1 using Eq. 3.3 as a pivoting value.

A =



a11 a12 . . . a1n
a21
a11

a22 −
a21
a11

a12 . . . a2n −
a21
a11

a1n

...
...

...
...

an1
a11

an2 −
an1
a11

a12 . . . ann −
an1
a11

a1n


Or

(3.5) A =


a11 a12 . . . a1n

`a21 `a22 . . . `a2n
...

...
...

...

`an1 `an2 . . . `ann


Where `a22 = a22 −

a21
a11

a12 and so on.
This procedure was repeated for the remaining equation and from x1 to xn. At the end of

the factorization steps the final matrices look like the following:

(3.6) A =


a11 a12 . . . a1n

`a21 `a22 . . . `a2n
...

...
...

...

an−2
n1 an−1

n2 . . . an−1
nn


, X =


x1

x2
...

xn


, B =


b1

b2
...

bn


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In step two (forward elimination and backward elimination) after taking into consideration
the arrangement of pivoting, the forward elimination will be applied to the following matrices:

(3.7) A =



1 0 . . . 0
`a21
...

1
...

. . .
...

0
...

an−2
n1 an−1

n2 . . . 1


, Y =


y1

y2
...

yn


, B =


b1

b2
...

bn


Where

y1 = b1
y2 = b2 − `a21b1

...

yn = bn − an−2
n1 b1 + an−1

n2 b2 + . . .

The final step is backward elimination which applies to the following matrices:

(3.8) A =


a11 a12 . . . a1n

0 `a22 . . . `a2n
...

...
...

...

0 0 . . . an−1
nn


, X =


x1

x2
...

xn


, Y =


y1

y2
...

yn


Since it only has one value, the final unknown will be calculated first.

xn =
yn

an−1
nn

The second unknown will be solved as xn−1 using the xn that solved previously, and the
following general formula can be used to solve the remaining unknowns.

xi =

yn −

n∑
j=i+1

a(i−1)
i j xj

a(i−1)
ii

, for i = n − 1, n − 2, . . . , 1

3.1. Solve the affine transformation with Gaussian elimination

In this section, the derivation of the six 2D affine linear transformation parameters is
described In general, the 2D transformation formula between any two coordinate systems has
two equations, one in the X direction (X axis) and the other in the (Y axis) Y direction. In
general, and can be used between points in the two systems to find the relationship between the
systems (transformation parameters). The general form formula of the 2D affine transformation
for the X direction is as follows:

X = ao + a1x + a2y
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And in matrix form:

(3.9)



1 x1 y1

1 x2 y2
...
...

...
...
...

...

1 xn yn


A

,



X1

X2
...
...

Xn


L

An equation in matrix form is of the form AX = B, where A represent the matrix of
parameters, X is the vector of unknowns in the column, and B is the vector of function value
in the column on the right side of the equations in a system.

AX − B = V
N = AT A
D = AT B
N X = D

X = N−1D

By solving the normal equation the following matrices can be derived:
For the matrix N , the final solution of the X-direction has 3 transformation parameters so

that the dimension of the N matrix will be 3×3 regardless of the number of points between the
two systems

(3.10) N =



n
n∑
1

x −
n∑
1

y

n∑
1

x
n∑
1

x2
n∑
1

xy

n∑
1

y

n∑
1

xy
n∑
1

y2


and so the D matrix has the dimension 3 × 1

(3.11) D =



n∑
1

X

n∑
1

xX

n∑
1

yX


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substitution matrices N and D in Eq. 3.3 yield

(3.12) W =



n
n∑
1

x
n∑
1

y

n∑
1

X

n∑
1

x
n∑
1

x2
n∑
1

xy
n∑
1

xX

n∑
1

y

n∑
1

xy
n∑
1

y2
n∑
1

yX


When solving the Eq. 3.12 by step two (forward elimination and backward elimination)

after taking into consideration the arrangement of pivoting which gives:

(3.13) =



n
n∑
1

x
n∑
1

y

n∑
1

X

n∑
1

x

n

n∑
1

x2 −

n∑
1

x2

n

n∑
1

xy −

n∑
1

x
n∑
1

y

n

n∑
1

xX −

n∑
1

x

n∑
1

X

n∑
1

y

n

n∑
1

xy −

n∑
1

x
n∑
1

y

n

n∑
1

y2 −

n∑
1

y2

n

n∑
1

yX −

n∑
1

y

n∑
1

X

n


And solving will give:

(3.14) ⇒ N33 =
n ·

∑
y2 −

(∑
y
)2

n
−

(
n ·

∑
xy −

∑
x ·

∑
y
)2

n2 ·
∑

x2 − n ·
(∑

x
)2

And

(3.15) D31 =
n ·

∑
yX −

∑
y ·

∑
X

n
−

−


(
n ·

∑
xy −

∑
x ·

∑
y
)
(n ·

∑
xX −

∑
x ·

∑
X)

n2 ·
∑

x2 − n ·
(∑

x
)2


From the following equations, the parameters of the X-axis can be derived.

⇒ a2 =
D31
N33

(3.16)

a1 =
n ·

∑
xX −

∑
x ·

∑
X −

(
n ·

∑
xy −

∑
x ·

∑
y
)
· a2

n ·
∑

x2 −
[∑

x
]2(3.17)
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a0 =

∑
X −

∑
x · a1 −

∑
y · a2

n
(3.18)

The first unknown a2 represent the coefficient of x, the second unknown a2 represent the
coefficient of y, the second unknown a0 represent the translation in the X-direction.

Similarly for Y -direction:

Y = bo + b1x + b2y =

=



n
n∑
1

x
n∑
1

y

n∑
1

Y

n∑
1

x

n

n∑
1

x2 −

n∑
1

x2

n

n∑
1

xy −

n∑
1

x
n∑
1

y

n

n∑
1

xY −

n∑
1

x

n∑
1

Y

n∑
1

y

n

n∑
1

xy −

n∑
1

x
n∑
1

y

n

n∑
1

y2 −

n∑
1

y2

n

n∑
1

yY −

n∑
1

y

n∑
1

Y

n


The final equations in the Y -direction are:

⇒ N33 =
n ·

∑
y2 −

(∑
y
)2

n
−

(
n ·

∑
xy −

∑
x ·

∑
y
)2

n2 ·
∑

x2 − n ·
(∑

x
)2(3.19)

D31 =
n ·

∑
yY −

∑
y ·

∑
Y

n
−

−


(
n ·

∑
xy −

∑
x ·

∑
y
)
(n ·

∑
xY −

∑
x ·

∑
Y )

n2 ·
∑

x2 − n ·
(∑

x
)2


(3.20)

From the following equations, the parameters of the Y -axis can be derived.

b2 =
D31
N33

(3.21)

b1 =
n ·

∑
xY −

∑
x ·

∑
Y −

(
n ·

∑
xy −

∑
x ·

∑
y
)
· b2

n ·
∑

x2 −
[∑

x
]2(3.22)

b0 =

∑
Y −

∑
x · b1 −

∑
y · b2

n
(3.23)
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3.2. Numerical example

The following Table 1. represents the 2D Cartesian coordinates in two systems, it is desired
to find the transformation coordinates.

Table 1. 2D cartesian coordinates in two systems

Point X (m) Y (m) x (m) y (m)

A 125 281 10 50

B 123 364 90 120

C 178.8 378.5 150 77

Solution:
According to the newmethod presented in this paper, the following matrix can be calculated:

W =



n
n∑
1

x
n∑
1

y

n∑
1

X

n∑
1

x
n∑
1

x2
n∑
1

xy
n∑
1

xX

n∑
1

y

n∑
1

xy
n∑
1

y2
n∑
1

yX


Solving the matrix by the previous equation the following results can be found:

W =


3 250 247 426.8
250 30700 22850 39140
247 22850 22829 34777.6


Applying these values in the following equations

⇒ N33 =
n ·

∑
y2 −

(∑
y
)2

n
−

(
n ·

∑
xy −

∑
x ·

∑
y
)2

n2 ·
∑

x2 − n ·
(∑

x
)2

⇒ N33 =

(
3 · 22829 − (247)2

3

)
−

©­­«
(
(3 · 22850 − 250 · 247)2

)(
32 · 30700 − 3 · (250)2

) ª®®¬ = 1971.945946

D31 =
n ·

∑
yX −

∑
y ·

∑
X

n
−


(
n ·

∑
xy −

∑
x ·

∑
y
) (

n ·
∑

xX −
∑

x ·
∑

X
)

n2 ·
∑

x2 − n ·
(∑

x
)2


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D31 =

(
(3 · 34777.6 − 247 · 426.8)

3

)
−


(3 · 22850 − 250 · 247) (3 · 39140 − 250 · 426.8)(

32 · 30700 − 3 · (250)2
)  =

= −1183.167568

a2 =
D31
N33
=
−1183.167568
1971.945946

= −0.6

a1 =
n ·

∑
xX −

∑
x ·

∑
X −

(
n ·

∑
xy −

∑
x ·

∑
y
)
· a2

n ·
∑

x2 −
[∑

x
]2

a1 =
(3 · 39140 − 250 · 426.8 − (3 · 22850 − 250 · 247) · −0.6)(

3 · 30700 − 2502
) = 0.5

a0 =

∑
X −

∑
x · a1 −

∑
y · a2

n

a0 =
(426.8 − 250 · 0.5 − 247 · −0.6)

3
= 150

The final transformation parameters in the X-direction are:

a0 = 150
a1 = 0.5

a2 = −0.6

When applying the derived equations in the Y -direction the parameters of b0, b1, b2 are:

b2 = 0.5
b1 = 0.6
b0 = 250

The example can also be computed by the least squares observation method and the result
found to be in Table 2.

Table 2. Transformation parameters by least squares observation method

Transformation Parameter Values

a0 150

a1 0.5

a2 -0.6

b0 250

b1 0.6

b2 0.5

The results after applying the regression with two independent variables the computed 2D
transformation parameters are given in Table 3.
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Table 3. Transformation parameters by regression with two independent variables

Transformation Parameter Vlaues

a0 150

a1 0.5

a2 -0.6

b0 250

b1 0.6

b2 0.5

4. Discussion

This paper discusses a new approach to finding the transformation parameters between two
coordinated systems, this is achieved by deriving new equations to compute the six affine 2D
transformation parameters using Gaussian elimination with pivoting.

The transformation parameters in the X-direction derived by the method presented in
the paper were 150, 0.5, and –0.6 for the a0, a1 and a2 respectively, and for the Y -direction
were 250, 0.6, and 0.5 for the transformation parameters b0, b1 and b2 respectively, to justify
the computed parameters, the 2D affine six transformation parameters were computed by
traditional method using the Least Squares Observation method LSQ and Regression with
Two Independent Variables RTIV the results were illustrated in Table 4.

Table 4. Comparison between the three methods

Transformation
Parameter

LSQ RTIV New method

a0 150 150 150

a1 0.5 0.5 0.5

a2 –0.6 –0.6 -0.6

b0 250 250 250

b1 0.6 0.6 0.6

b2 0.5 0.5 0.5

The results presented in Table 4 indicated that the new method has the same accuracy as
other traditional methods, and the advantage of the new method over other methods is the
speed and ease which can be used to reduce the processing time in image processing and
photogrammetry software.
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5. Conclusions

The frequent problem in photogrammetry is converting one rectangular coordinate system
to another. The operation requires that the points themselves have their known coordinates in
both systems, the arbitrary and calibrated coordinate system.

This paper introduces a new method for computing the 2D affine transform parameter, the
problem of the 2D affine transform method has been solved by Gaussian elimination with
pivoting. In this paper, we have derived equations by which to find transformation parameters.
The main usefulness of this method is that numerical calculations can be performed without
solving the inverse matrix. The results indicated that the method has high accuracy computation
to the 2D transformation parameters furthermore the method is regarded as fast and easy to
implement which can be used to reduce the time and processing routines in image processing
and photogrammetry software. The results presented from the method in this paper are
completely competitive with other methods.
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