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Numerical prognosis of the dynamic response of the steel
rectangular slab under the explosive load

Sławomir Onopiuk1, Adam Stolarski2, Ryszard Rekucki3

Abstract: The paper presents the methodology for determination the numerical prognosis of the dynamic
response of the rectangular steel slab subjected to an explosive load, aimed at thorough preparation of
experimental tests. In the presented work, in order to fully describe the parameters of the shock wave impact
on the steel slab, an appropriate combination of formulas known in the literature was used. In order to
describe the dynamic behavior of the rectangular steel slab, the resources of the ABAQUS computing
software were used. The Johnson–Cook constitutive model was used to describe the dynamic behavior of
the structural material. An explicit procedure has been used to solve the equations of motion for the slab.
The parameters of the shock wave from the explosion of the TNT charge with the assumed mass and the
distance of its location from the slab were determined. As a result of the numerical analysis, the results of
changes in displacement and acceleration in time were presented, indicating the nature of the very intense
and fast-varying dynamic behavior of the slab. Conclusions were also formulated regarding the requirements
for the selection of parameters of the sensors recording both the function of real explosion pressure in time
and the function of acceleration in time of the slab model during experimental tests.
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1. Introduction

The scope of the work applies to the numerical prognosis of the dynamic response of the
steel rectangular slab under the explosive load, aimed at thorough preparation of experimental
tests. The basis for the motivation to take up the topic was the authors’ belief that conducting
extremely expensive experiments in the field of testing the dynamic reaction of steel slabs
subjected to an explosive load in free air cannot be effectively carried out without an appropriate
numerical prognosis.

Effective development of such a prediction requires the following components of the
solution to be considered:

– Modeling of the explosive load on the basis of experimentally verified procedures.
– Modeling the behavior of the structural element, rectangular steel slab enabling the
analysis of fast-changing and short duration dynamic processes.

– Constitutive modeling of the construction material dynamic behavior, taking into account
the strengthening of dynamic strength.

The area of knowledge in the field of explosive load modeling is developed in the close
circle of researchers and specialists.

The work of Karlos and Solomos [1] presents an overview of the procedures for determining
the explosion load on structures in the form of a technical guide. Practical methods of estimating
the blast loading on structures are given. Examples of structures subjected to explosive loads
were also analyzed.

In the work of Trzciński [2], the comparative analysis of the basic parameters of blast
waves, amplitude and specific impulse, obtained with the use of various empirical formulas,
was carried out.

In the work of Sochet et al. [3] presents the formulas defining the characteristic param-
eters of the incident shock wave: the overpressure value, the duration and the overpressure
impulse. The researches were carried out for three different explosives: TriNitroToluene (TNT),
PEntaerythritol TetraNitrate (PETN) and Ammonium Nitrate / Fuel Oil (ANFO), for which
appropriate energy equivalents were determined.

In the work of Siwiński and Stolarski [4], the method of determining the action of an
external explosion on building barriers on the basis of the analysis of selected procedures
known from the literature, was presented. The algorithm for determining the initial pressure
of the incident and reflected wave, the duration of the overpressure and the negative pressure
phases as well as the course of pressure load variability over time was developed.

In the field of modeling the behavior of explosively loaded structural elements, computa-
tional methods based on system software are used.

For example, in the work by Niezgoda et al. [5], the LS-DYNA computing system was used
for the dynamic analysis of a multi-layer energy-absorbing panel with a protective aluminum
plate and a supporting steel plate, with dimensions 550 × 550 × 2 mm, loaded with a shock
wave from the explosion of a 0.5 kg mass TNT charge, placed centrally over the plate at
a distance of 430 mm. As a result of the numerical analysis, the authors found a very good
agreement with the obtained results of experimental studies.
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In the paper by Trajkovski et al. [6], the LS-DYNA system was also used for a comparative
analysis of the load capacity of floors in light armored vehicles (LAVs) subjected to the impact
of blast waves from the explosion. The authors showed that a V-shaped hull floor provided
a much better vehicle response to explosives than a flat floor.

In the paper by Park and Cho [7], the MSC/DYTRAN computing system was used for
numerical validation of the computational method of rectangular unstiffened and stiffened
plates under explosive load on the basis of experimental data. Parametric tests for various plate
models made it possible to derive design relationships between permanent damage to the plates
and the explosive impact parameter. The comparative analysis confirmed the high agreement
of the approximation of the experimental results based on the proposed design relationships in
comparison to the results obtained for other design formulas known from the literature.

In the work of Zheng et al. [8], the results of experimental tests of square, fully clamped
ribbed plates as outer walls of a cuboidal chamber subjected to an internal explosive load,
are presented. Based on experimental observations of plate behavior mechanisms, analytical
rigid-plastic and elastic-plastic models were presented to calculate the dynamic response and
permanent displacements of the plates. Numerical simulations were also carried out using the
ANSYS AUTODYN computational software to study the influence of the material strain rate
and boundary conditions on the dynamic response of the ribbed plates.

In the presented work, in order to fully describe the parameters of the shock wave impact
on the steel slab, an appropriate combination of formulas known in the literature was used.
To determine the incident overpressure wave and the duration of the overpressure phase, the
formulas according to [3] were used, in which both the overpressure amplitude and the very
short duration of the overpressure phase were relatively accurately described. In turn, the
incident wave front speed was determined according to the work of Krzewiński [9]. Then,
commonly known formulas according to [1, 4] were used to determine the overpressure on the
front of the wave reflected from the slab. Finally, the remaining parameters of the blast wave,
i.e. the minimum negative pressure below atmospheric pressure, the duration of the negative
pressure phase to reach the minimum negative pressure and the duration of the entire negative
pressure phase, were determined as a function of the pressure wave variation over time using
the expression proposed by Lee and Chiu [10]. Detailed values of the explosion parameters of
various explosives are included in the monograph by Cudziło et al. [11].

In order to describe the dynamic behavior of the rectangular steel slab, the resources of the
ABAQUS computing software were used [12]. Namely, a computational model of the slab
was developed using shell finite elements. The Johnson–Cook constitutive model [13, 14], was
used to describe the dynamic behavior of the structural material. An explicit procedure has
been used to solve the equations of motion for the slab, see Wriggers’ monograph [15], which
also contains detailed information on the methods used in nonlinear finite element analysis.

The parameters of the shock wave from the explosion of the TNT charge with the assumed
mass and the distance of its location from the slab were determined. The main purpose of
this work is to investigate the stability of the response of the numerical slab model to extreme
loading conditions. A simplified validation of the numerical model was carried out by analyzing
the sensitivity of the model to mass damping. The detailed purpose of the work is to present the
results of the displacement and acceleration changes in time, indicating the nature of the dynamic
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behavior of the slab. Conclusions were also formulated regarding the requirements for the
selection of parameters of the sensors recording both the function of real explosion pressure in
time and the function of acceleration in time of the slab model in the intended experimental tests.

2. Computational model of the slab

The subject of the analysis is a steel, rectangular slab with circumferential stiffeners. The
dynamic behavior of the slab under the explosive load caused by the detonation of a spherical
TNT explosive charge of mass m operating in the free air at a distance r from the center of the
slab, is analyzed.

The numerical simulation of the analysed slab is carried out using the Abaqus computational
program. In the numerical model, the slab and the circumferential stiffeners were discretized
with a shell finite element S4R, i.e. a 4-node, quadrilateral shell element with first-order
interpolation, reduced integration, and nine Gaussian points along the cross-section, for
displacement and stresses analysis with the large-strain formulation [12].

A fully supported boundary is applied to the slab circumferential stiffeners. The degrees of
freedom of movement of all nodes in the bottom layers of the circumferential stiffeners are
modeled as limited.

The mesh size of the slab model was dependent on the geometry of the flat slab part in
combination with circumferential stiffeners. Number of 30×20 finite elements of a 50×50 mm
mesh grid dimensions was used along longitudinal and transverse direction of the slab.

The FE model of the slab is shown in the Fig. 1.

Fig. 1. Geometry details and the finite elements grid of the slab’s model

In the numerical analysis the following modelling parameters for the slab under explosive
loading were applied, Table 1.
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Table 1. Modelling parameters for the slab

Explosive loading
TNT spherical charge mass m = 1.5 kg

distance from the center of the explosion r = 1.0 m
Material of slab type of steel S235

Geometry and FE
mesh of slab

length lx = 1.5 m
width ly = 1.0 m

sheet thickness t = 0.012 m
circumferential stiffener cross section height h = 0.05 m

length and width of the FE mesh ∆x = ∆y = 0.05 m

The previous experience of many researchers indicates that for explosive charges weighing
m ≤ 5 kg, the effect of the post-explosion gas rarefaction process in the air medium, was no
longer observed from a distance:

(2.1) rmin = (10 ÷ 12) r0

where: r0 = 0.053 3√m is the equivalent radius of the spherical TNT charge.
The distance r = 1.0 m assumed for the analysis meets the condition of the impact of a free

shock wave in the air on the slab, without the influence of the pressure of post-explosion rarefied
gases from the explosion of a charge with mass of m = 1.5 kg, because r = 16.5r0 > rmin.

3. Modelling of blast load action on slab

3.1. Parameters of blast wave from explosive charge detonation

The distribution of pressure wave change over time from explosive charge detonation is
shown in the Fig. 2, see Sochet et al. [3], Karlos and Solomos [1], Siwiński and Stolarski [4].

Fig. 2. Pressure wave change over time
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This diagram presents the following parameters characterizing the blast wave:
ta – arrival time of the wave-front,
∆p+ – maximum overpressure above atmospheric pressure p0,
τ+− duration of the overpressure phase,
t1 = ta + τ+ – time of decay of the overpressure phase,
∆p− – minimum depression below atmospheric pressure,
τ−m – negative pressure phase duration to reach the minimum depression,
τ− – duration of the negative pressure phase,
td = t1 + τ− – decay time of the negative pressure phase, equivalent to the duration of the

pressure load.
The basic parameters characterizing the blast wave in the overpressure phase were

determined under assumption that the detonation of explosive TNT spherical charge of mass
m [kg] is acting in free air at the distance r [m] from the center of the explosion, for the
equivalent distance Z [m·kg−1/3]:

(3.1) Z =
r

3√m

The maximum overpressure of incident wave ∆p+i [bar = 105Pa] is determined in the
form [3]:
for 0.3 < Z < 2:

(3.2a) ∆p+i = exp(2.2411 − 2.3065 ln Z − 0.3646 ln2 Z)

for 2 < Z < 30:

(3.2b) ∆p+i = exp(2.466 − 3.1974 ln Z + 0.5375 ln2 Z + 0.0024 ln3 Z − 0.0096 ln4 Z)

In turn, the duration of the overpressure phase τ+ [ms] is specified in the form [3]:
for 0.4 ≤ Z ≤ 1:

(3.3a) τ+ = 3√m exp(0.5810 − 0.5423 ln Z − 11.1572 ln2 Z − 11.9941 ln3 Z − 3.4023 ln4 Z)

for 1 < Z ≤ 30:

(3.3b) τ+ = 3√m exp(0.5511 + 0.0271 ln Z + 0.4937 ln2 Z − 0.2079 ln3 Z + 0.0268 ln4 Z)

The incident wave front speed can be determined on the basis of the equation according to
Krzewiński [9]:

(3.4) U =

√
a2

0 +
∆p+i

(
αQ + 1

)
2ρ0

where: a0 = 340.3 m/s is the sound speed in the air, ρ0 = 1.227 kg/m3 is the medium density
of dry air, αQ ∈ (1.2, 1.4) is the coefficient depending on the specific heat of explosion, which
for TNT is equal to Q = 4200 kJ/kg [11].
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The arrival time of the wave front is defined as:

(3.5) ta =
r
U

In case of the blast wave impact on the barrier, it is necessary to determine the overpressure
on the front of the reflected wave from the barrier in the form [1, 4]:

(3.6) ∆p+r = 2∆p+i +
6(∆p+i )

2

∆p+i + 7p0
= 2∆p+i

4∆p+i + 7p0

∆p+i + 7p0

where: p0 = 101325 Pa is the value of normal ambient atmospheric pressure.
The remaining parameters of the blast wave were determined as the function of pressure

wave variability over time using the expression proposed by Lee and Chiu [10], see also [4]:

(3.7) p (t) = ∆p+r
(
1 −

t
τ+

)
e

(
− at

τ+

)
, a = 1.39(∆p+i )

0.54

Thus, based on Eq. (3.7), the minimum depression below atmospheric pressure and negative
pressure phase duration to reach the minimum depression are determined as follows:

(3.8) ∆p− =
1
a

e
−(1+a)

∆p+r
and
(3.9) τ−m=

1
a
τ
+

The duration of the negative pressure phase was also determined by Eq. (3.7) at the
assumption that the virtually negligible depression value:

(3.10) ∆p (tdc) = εa∆p−

is reached at the conventional decay time tdc of the negative pressure phase with an
accuracy equal to, for example, εa = 0.05 and tdc is specified assuming ta = 0.

For this purpose, Eq. (3.7) with (3.8) and (3.10) has been transformed into the parametric
form:

(3.11) εa
1
a

e−(1+a)e
(
atdc
τ+

)
= 1 −

tdc
τ+
= δ, δ < 0

The solution of Eq. (3.11) leads to the determination of both the duration of negative
pressure phase (exactly):

(3.12) τ− =
1
a

ln
(
|δ | ea
εa

)
τ
+

= −δτ+

and the δ parameter (in the iterative process):

(3.13) δ = −
1
a

ln
(
|δ | ea
εa

)
For the purposes of numerical analysis, the following parameters of the blast wave from

explosive charge were calculated, Table 2.
The final, calculated pressure wave change over time for the explosive charge data used is

shown in the Fig. 3.
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Table 2. Parameters of the blast wave

maximum overpressure above atmospheric pressure p0 ∆p+r = 7.471 MPa

minimum depression below atmospheric pressure ∆p− = −0.355 MPa

virtually negligible depression value ∆p (tdc) = −0.0178 MPa

duration of the overpressure phase τ+ = 1.848 ms

negative pressure phase duration to reach the minimum depression τ−m = 1.166 ms

duration of the negative pressure phase to reach the virtually negligible
depression value

τ− = 6.695 ms

conventional time of decay of the negative pressure phase tdc = 8.543 ms

Fig. 3. Calculated pressure wave change over time

3.2. Distribution of the explosion pressure on the slab surface

Detonation of explosive TNT spherical charge of mass m at a distance r from the center of
the slab was considered in the arrangement shown in the Fig. 4.

Figure 4 shows the slab load zones described by the corner point A(xy) located at the
shortest distance from the slab center A (0, 0) :

(3.14) A (x, y) = A


x = (i − 1)Dx Dx =

lx
2I

i = 1, I

y = ( j − 1)Dy Dy =
ly
2J

j = 1, J


where: I, J,Dx,Dy are the number and dimensions of the load zones in the appropriate
directions of slab division.
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Fig. 4. Location of the explosive charge in relation to any point on the slab surface (description in the text)

In turn, the distance of the explosive charge from each load zone is defined as follows:

(3.15) R(xy) =
r

cosαx cosαy

where: αx = arctg
x
r
, αy = arctg

y

r
are the appropriate angles of wave front incident on the slab.

Thus, the blast wave parameters described by Eq. (3.1)–(3.10) are determined separately for
each load zone. To this purpose, it was assumed that these parameters depend on the distance
(3.15) from the slab load zone to the explosive charge and they are constant over the entire area
of the zone.

However, the explosion pressure distribution on the slab surface can be determined in
a simplified way. For this purpose, the overpressure on the reflected wave front at any point of
the slab A(xy) located at a distance R(xy) from the explosive charge is described as follows:

(3.16) ∆p+r (R) = ∆p+r (r) cos2 αx cos2 αy = ∆p+r (r) Cxy

where: ∆p+r (r) = ∆p+r is the value of overpressure on the reflected wave front at the distance of
the charge from the slab r = R(0, 0) determined according to Eq. (3.6), Cxy = cos2 αx cos2 αy
are the coefficients of the explosion pressure distribution for each slab load zone.

Also, the arrival time of the wave front to any point of the slab A(xy) is now described
according to (3.5) but with the distance R(xy) and with the modified value of overpressure
(3.16) taken into account:

(3.17) ta =
R(x, y)

U
[
∆p+r (R)

]
For the purposes of numerical analysis, the uniform explosion pressure distribution on the

slab was assumed. In this case the arrival time of the wave front to the center point of the slab
is equal to ta = 0.873 ms.
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4. Dynamic equilibrium equation
The dynamic equilibrium equation of the slab at the current time t, was applied in the form:

(4.1) M Üw (t) + C Ûw (t) + Kw (t) = P(t)

where: M,C, and K are the nodal mass, damping, and stiffness matrices, Üw (t), Ûw (t), and w (t)
are the nodal accelerations, velocities and displacements vectors, P(t) is the vector of the
external applied forces.

The Rayleigh model of damping was assumed that the damping matrix is a linear
combination of the mass and stiffness matrices:

(4.2) C = αM + βK

where: α and β are assumed damping parameters.
In the numerical analysis, only the Rayleigh mass damping parameter α was used, omitting

the β parameter. The parameter α was chosen in such a way as to define the damped aperiodic
motion, which disappears after reaching 5 to 10 maximum displacement amplitudes. The mass
damping parameter was analyzed in the range α = [0; 110].

The explicit procedure was used for solving of equation of motion (4.1) under assumption
of the lumped mass matrix of diagonal structure [15]. Then, the accelerations at the beginning
of the current time are calculated as:

(4.3) Üw (t) = M−1 [P(t) − C Ûw (t) − Kw (t)]

The central difference scheme is used to explicit time integration the equations of motion.
Within this scheme the velocities and the displacements are determined at the end of the next
time increment t + ∆t knowing all the kinematic conditions from the previous increments:

(4.4) Ûw (t + ∆t) = Ûw (t − ∆t) + 2∆t Üw (t)

(4.5) w (t + ∆t) = w (t) + ∆t
Ûw (t + ∆t) + Ûw (t)

2

The initialization the central difference scheme requires to introduce the initial conditions
at the time t0 = 0.

(4.6) Üw (t0) = Üw0, Ûw (t0) = Ûw0, Ûw (t0 − ∆t) = Ûw0 − ∆t Üw0

where: the Eq. (4.6)3 follows on the first order accurate Taylor series expansion for the velocities.
Since the explicit method for integration the equations of motion is conditionally stable, it

is necessary to introduce the time step limitation in relation to the critical time step:

(4.7) ∆t ≤ r∆tcrit

where: 0.2 ≤ r ≤ 0.9 is the assumed reduction factor depending on the nonlinearity level of
the problem under consideration.
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The critical time step is the function of the element length and the wave velocity of the material:

(4.8) ∆tcrit =
∆Le

min
cd,max

where: ∆Le
min is the smallest characteristic length of the element in the FE-discretization,

cd,max =
√

E
ρ is the fastest dilatation wave velocity in the elastic material, E is Young’s

modulus, and ρ is the mass density.

5. Material model
The slab and circumferential stiffeners are made from low carbon mild steel. In numerical

analysis, the Huber–Mises–Hencky yield surface with the associated flow rule is used in the
Johnson–Cook plasticity model.

The Johnson–Cook constitutive equation is used to describe the evolution of the combined
effects of isotropic plastic hardening in strain rate and temperature dependence as the basic
material behavior of the material in the form [13,14]:

(5.1) σyd =
[
A + B

(
ε
pl
eff

)n] [
1 + Cln

(
Ûε
pl
eff
Ûε0

)]
(1 − τm)

where: σyd is the dynamic yield stress (MPa), A is material parameter equal to the initial,
static yield stress σy (MPa), B is the plastic hardening modulus (MPa), εpleff is the effective
plastic strain; n is the plastic hardening parameter, C is the strain rate hardening parameter,
Ûε
pl
eff is effective plastic strain rate (s−1), Ûε0 is the reference strain rate for which the dynamic

yield stress is equal to static yield stress σyd = σy (s−1), τ is the nondimensional temperature
coefficient; m is the temperature softening parameter.

The nondimensional temperature coefficient is defined as:

(5.2) 0 < τ =
T − Ttrans

Tmelt − Ttrans
< 1

where: T is the current temperature (K) at which the experiment is being carried out, Ttrans is
the transition temperature at or below which the material parameters must be measured, Tmelt
is the is the melting temperature at which the material will be melted and will behave with no
shear resistance.

The limitation for τ in (5.2) mean that if T ≤ Ttrans then τ = 0 or if T ≥ Tmelt then τ = 1
and σyd = 0.

In the numerical analysis, the following parameters for S235 steel were used, describing
the adopted Johnson–Cook constitutive model, Table 3.

Table 3. Mechanical properties of the S235 steel and material model parameters

ρ ν E A = σy B n C Ûε0 T Ttrans Tmelt m

kg/m3 GPa MPa MPa s−1 K K K
7850 0.3 210 235 130 0.024 0.05 0.00001 293 293 1540 1.03



484 S. ONOPIUK, A. STOLARSKI, R. REKUCKI

6. Analysis of the numerical results

The results of the numerical analysis for the slab under the computational load caused
by the explosion of the TNT explosive charge with a mass of 1.5 kg at a distance of 1 m are
presented. The results illustrate the change in time of the displacement and acceleration of the
slab midpoint caused by the pressure load of the blast shock wave.

The results are presented for two values of the mass damping parameter α. The critical time
step for the explicit method of integrating the equations of motion was determined according
to Eq. (4.8) and is equal to ∆tcrit = 9.967 µs The total analysis time was assumed to be 50 ms.

Figure 5 shows the results for the parameter α = 0, which defines the undamped vibrating
motion. The average value of the time step determined in the calculation procedure for this
case of analysis is ∆t = 8.012 µs.

The first maximum displacement amplitude is w1 = 11.71 cm and was reached in time
t1 = 3.708 ms.

The vibrating motion stabilizes after the 4th maximum displacement amplitude and takes
place around the value of the permanent displacement wp � 10.42 cm, which is determined
when the displacement velocity reaches zero value.

The variability of the midpoint acceleration over time is characterized by large jumps in
value during the overpressure wave (τ+ = 1.848 ms) and at the beginning of the negative
pressure wave. The initial (i.e. at the time t0 = 0.0) acceleration value is Üw (t0) = 79315 m/s2.

The highest positive acceleration value Üwmax = 112142 m/s2 was recorded at the time t =
0.874 ms. In turn, the smallest negative acceleration value (deceleration) Üwmin = −154426 m/s2

was recorded at the time t = 2.595 ms, i.e. before reaching the first maximum displacement
amplitude. In the period of stabilization of the vibrating motion after the 4th maximum dis-
placement amplitude, the acceleration values change in the range ∆ Üw � (−42000; 29000) m/s2.

The average period of inelastic free vibrations of the slab, recorded after the end of the
pressure wave action at the time tdc = 8.543 ms, is Tfυ = 5.131 ms.

Figure 6 presents the results for the parameter α = 110 defining the damped vibration
motion. The damping parameter was selected in such a way as to define the damped motion
that disappears after reaching from 5 to 10 maximum displacement amplitudes.

The average value of the time step determined in the calculation procedure for this case of
analysis is ∆t = 8.009 µs.

The first maximum displacement amplitude is w1 = 10.28 cm and was reached in time
t1 = 2.724 ms.

The vibrating motion disappears after the 9th maximum displacement amplitude. Dif-
ferences in displacement amplitudes tend asymptotically to zero at the value of permanent
displacement wp � 8.77 cm.

As in the case of the undamped motion of the slab, the variability of the midpoint
acceleration over time is characterized by large jumps in value during the overpressure wave
and at the beginning of the negative pressure wave. The initial acceleration value is the same
as in the case of undamped slab motion.
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Fig. 5. The results of the numerical analysis for the slab subjected to explosion for the mass damping
parameter α = 0; (a) change in the pressure wave over time, (b) change in the displacement of the

midpoint over time, (c) change in the acceleration of the midpoint over time
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Fig. 6. The results of the numerical analysis for the slab subjected to explosion for the mass damping
parameter α = 110; (a) change in the pressure wave over time, (b) change in the displacement of the

midpoint over time, (c) change in the acceleration of the midpoint over time
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The highest positive acceleration value Üwmax = 103956 m/s2 was recorded at the time
t = 0.874 ms. Compared to the case of undamped slab motion, the highest value of positive
acceleration is less by about 7.3%, but it was reached in the same time.

The smallest negative acceleration value (deceleration) Üwmin = −141458 m/s2 was recorded
at the time t = 2.603 ms, also before reaching the first maximum displacement amplitude.
The smallest value of negative acceleration is greater by about 9.2% compared to the case of
undamped slab motion and was achieved in a slightly longer time.

The effect of acceleration damping is practically visible already after the 4th maximum
displacement amplitude. Then the acceleration amplitudes decrease significantly. After the
9th maximum displacement amplitude, the acceleration values change in the range ∆ Üw �
(−2500; 1400) m/s2, with a constant tendency to reach practically zero values.

7. Conclusions
The paper presents the methodology for determination the numerical prognosis of the

dynamic response of the rectangular steel slab subjected to an explosive load.
As a result of the numerical analysis, the results of changes in displacement and acceleration

in time were presented, indicating the nature of the dynamic behavior of the slab.
The solution was obtained for specific material and geometrical parameters of the steel slab

and for the impact of the pressure wave from the assumed explosive charge of mass m = 1.5 kg
placed at a distance of r = 1.0 m from the slab.

The most important features of the obtained solution are as follows.
1. Numerical solution method:

– Stability of the response of the numerical slab model to extreme loading conditions
was proved

– Adopted time step of the numerical solution method and the interdependent mesh
size guarantee the stability and the effectiveness of the numerical analysis

– Analysis of the model’s sensitivity to mass damping confirmed the stable behavior of
the slab.

2. Load variation over time:
– Very high value of the initial pressure ∆p+r = 7.471 MPa with a rapid decrease in
a very short time τ+ = 1.848 ms of the overpressure phase

– Very small (but not negligible) value of pressure ∆p− = −0.355 MPa realized with
a slow increase and then - decrease in a relatively long time τ− = 6.695 ms of the
negative pressure phase.

3. Variation of the displacement of the slab midpoint over time in damped motion:
– Very large value of the first maximum displacement amplitude w1 = 10.28 cm (i.e. of
the order of ≈ 8.5 times the plate thickness), reached in time t1 = 2.724 ms

– Very large value of the permanent displacement wp � 8.77 cm, reached after the 9th
maximum amplitude of the displacement in the time tp � 50 ms.
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4. Variation of the acceleration of the slab midpoint over time in damped motion:
– Very high values of positive acceleration Üwmax = 103956 m/s2 and negative acceler-
ation Üwmin = −141458 m/s2 (i.e. of the order of ≈ 10600gn and ≈ 14400gn, where
gn = 9.80665 m/s2 is the normal gravitational acceleration), achieved in a time shorter
than the time of reaching the first maximum displacement amplitude

– Relatively small acceleration values changing in the range ∆ Üw � (−2500; 1400) m/s2,
(i.e. of the order of ≈ (−255gn; 143gn)), reached after the 9th maximum displacement
amplitude.

Such characteristics of short-term phenomena make it necessary to carefully select the type of
sensors that record the parameters of the load and movement of the experimental model of the slab.
Assuming that these sensors will be permanently fixed in the zone of the midpoint of the slab,
they must be able to record measurements under conditions of very large acceleration changes.

Recording the actual change of the pressure wave over time directly on the slab surface
will allow verification of the pressure value of the wave reflected from the slab, which is not
a completely rigid barrier. Moreover, the registration of changes of acceleration over time will
make it possible to determine the displacement velocity and the displacement of a specific
point on the slab. As a consequence, it will be possible to precisely identify the parameters of
the numerical model simulating the dynamic behavior of the steel slab under explosive load.
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Numeryczna prognoza dynamicznej reakcji stalowej płyty prostokątnej
obciążonej wybuchowo

Słowa kluczowe: analiza numeryczna, obciążenie wybuchowe, płyta stalowa, proces dynamicznej
deformacji, tłumienie

Streszczenie:

W artykule przedstawiono metodykę wyznaczania numerycznej prognozy reakcji dynamicznej
prostokątnej płyty stalowej poddanej obciążeniu wybuchem, mającą na celu dokładne przygotowanie
badań eksperymentalnych. W prezentowanej pracy zastosowano odpowiednią kombinację wzorów
znanych z literatury, aby w pełni opisać parametry oddziaływania fali uderzeniowej na płytę stalową. W
celu opisania zachowania dynamicznego prostokątnej płyty stalowej wykorzystano zasoby programu
obliczeniowego ABAQUS. Do opisu dynamicznego zachowania się materiału konstrukcyjnego zasto-
sowano model konstytutywny Johnsona–Cooka. Zastosowano jawną procedurę rozwiązania równania
ruchu płyty. Wyznaczono parametry fali uderzeniowej od wybuchu ładunku trotylu o założonej masie
oraz odległości jego położenia od płyty. W wyniku analizy numerycznej przedstawiono wyniki zmian
przemieszczeń i przyspieszeń w czasie, wskazując na charakter bardzo intensywnego i szybkozmiennego
zachowania dynamicznego płyty. Sformułowano również wnioski dotyczące wymagań dotyczących
doboru parametrów czujników rejestrujących zarówno funkcję rzeczywistego ciśnienia wybuchu w
czasie, jak i funkcję przyspieszenia w czasie modelu płyty podczas badań eksperymentalnych.
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