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Abstract: The paper deals with stability problems of straight elastic bars made of a homogenous isotropic
material. The approach concerns both the bars of compact cross-sections and of thin-walled cross-sections,
the transverse distortions being neglected. The stability analysis method developed for thin-walled bars in the
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buckling theory”, Thin-Walled Structures, vol. 42 (2004), pp. 1665–1687 is here extended to the bars whose
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assess the values of critical loads causing: axial forces, bending moments, transverse forces and torques,
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1. Introduction

The Vlasov theory of thin-walled straight bars of open cross sections has been recently
extended to encompass deformation modelling of straight bars of arbitrary cross-sections,
cf. Lewiński & Czarnecki [1]. This new method will be called a Vlasov-like theory of bars.
The mathematical structure of the theory coincides with that of Vlasov’s, while the sectional
characteristics are computed by appropriate procedure reducing to solving three auxiliary
elliptic problems posed on the bar’s section domain. Thismakes it possible to set a framework for
solving a vast family of static and stability problems including axial and lateral buckling of bars
with admissible boundary conditions. The known solutions concerning thin-walled bars of open
cross sections published in Gawęcki [2], Weiss and Giżejowski [3], Timoshenko & Gere [4],
Trahair et al. [5], Petersen [6], Zhang and Tong [7–9] and Piotrowski and Szychowski [10–13]
can now be extended towards bars of solid cross-sections of practically arbitrary geometry. It
occurs that the Rayleigh quotient method appears to be a well-chosen tool to set and solve the
main problems of stability of a single bar. The aim of the present paper is to put forward the
details of this method, amending it with original concepts by Zhang & Tong [7–9] based on the
Vlasov theory of bars of open profiles. The final expressions of the Rayleigh quotients turn out
to be compatible with those found by Zhang & Tong [7–9] although based on different formulae
of stress recovery in the bar treated as a spatial body. The paper puts forward new methods
of solving the maximization problems corresponding to the Rayleigh method. The approach
proposed is illustrated by examples concerning mono-symmetric and bisymmetric profiles.

2. A unified approach to stability of spatial elastic bodies

Consider a 3D elastic anisotropic body with moduli Ci jkl (x); the body is supported on
a certain part of the boundary (thus preventing from the rigid motions) and subject to the
loads being proportional to a multiplier λ. Before achieving the state of the loss of stability of
equilibrium the stresses λσi j

o (x) appear. The tensor fields Ci jkl (x) and σi j
o (x), given in the

domain Ω occupied by the body in its initial configuration, are involved in the numerator and
denominator of the Rayleigh quotient; its argument is the kinematically admissible vector field
of displacements denoted by v. According to the linear theory of stability, cf. Washizu [14] and
Zhang & Tong [7–9], the critical value of the load multiplier λ is expressed by
(2.1)

1
|λcrit |

= max
v being

kinematically admissible
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Here xi , i = 1, 2, 3 are coordinates of a Cartesian coordinate system parametrizing the
domain of the body; vi is the i th component of the virtual displacement field v. The formula
Eq. (2.1) is highly practical, since the kinematic boundary conditions are independent of the
multiplier which is unknown. This property still holds within the 1D modelling, which is a
crucial argument justifying using the Rayleigh quotient method in the analysis of stability of bars.
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3. Stability of equilibrium of bars of arbitrary cross sections
To perform the stability analysis we express: the displacement fields as well as stress

fields in Eq. (2.1) in terms of the fields (referred to the longitudinal axis) involved in the bar
theory. Here we use the kinematic assumptions of the Vlasov-like theory (cf. Eqs (5.1–5.3) in
Lewiński & Czarnecki [1]) omitting the last two terms in Eqs (5.1) and we use the formulae
for stresses expressed in terms of the stress resultants according to Librescu & Song’s theory,
see Eqs (1.2.1–3) and (5.3.1) (without two last terms) and Eqs (5.3.2)–(5.3.4-6) in Lewiński
& Czarnecki [1]. In the Vlasov-like bar theory all the fields are referred to the x = x1 axis
linking the shear centers S of coordinates x2 = ys, x3 = zs on the plane x = const of the
bar’s transverse cross section. Within the Vlasov-like theory the bar is subjected to the axial
and transverse loadings, the latter being applied along the line linking the shear centers. The
intensities of distributed loadings applied in y and z directions are denoted by qy(x), qz(x),
respectively. The deformation of the bar is described with using the displacements u(x), v(x),
w(x) of points along the line linking the shear centers and the field θ (x) representing the angle
of twist along the x axis. This dimension reduction to a one-dimensional model leads to the
expression for the elastic energy stored in the bar subject to bending and torsion, being the
denominator in Eq. (2.1); it is given by Eq. (9.5) in the paper by Lewiński & Czarnecki [1]. On
the other hand, the state of stress σi j

o (x) within the bar can be expressed in terms of the axial
force No (x), bending moments Mo

y (x), Mo
z (x) transverse forces To

y (x) , To
z (x), the bimoment

Bo (x) and the torsional moment Mo (x). This leads to the Rayleigh quotient Eq. (2.1) in the
form involving only the terms of the Vlasov-like theory. The maximization operation can be
performed analytically, semi-analytically or numerically.

The dimension reduction process described above requires a special care if the load is applied
not along the line linking the shear centers but is shifted in the y or z directions. The transverse
load qz(x) may be applied to the points of the axis (x, ys, z2) while the lateral load qy(x) – to
the points of the axis (x, y1, zs), see Fig. 1. These shifts affect the value of the work of the initial
stresses forming the numerator in the quotient (2.1), which will be discussed in the sequel.

Fig. 1. Parametrization of the bar’s cross section; y and z are principal axes; position of the centroid (O)
and the shear center (S). Possible points of applications of the transverse and lateral loads are shown.
When the section is rotated by the virtual angle θ, the points of applications of these loads displace along

the lines of applications of the loads, hence an additional virtual work is created
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4. The Rayleigh quotient method as a tool of solving the
problems of stability of bars

As noted in Sections 2 and 3 the reduction of the dimensions: from the spatial to one-
dimensional in the expression for the Rayleigh quotient (2.1) leads to the problem of the form

(4.1)
1
|λcrit |

= max
v,w,θ being

kinematically admissible

W0 (v,w, θ)

W (v,w, θ)

where W (v,w, θ) stands for the elastic energy stored in the bar; it is given by the Eq. (9.5)
in Lewiński & Czarnecki [1]; v(x), w(x) represent displacements along the axes y (lateral)
and z (vertical) of points lying along the line (x, ys, zs) linking the shear centers, while θ (x)
represents the angle of twist (in the x direction).

Consider now the case of the transverse loads being applied at points along the axis linking
the shear centers; this means that quantities e1, e2 (shown in Fig. 1) vanish. The quantity
W0 (v,w, θ) standing for the work of initial stresses (the numerator of the quotient (2.1)) can be
expressed by the terms of Vlasov-like theory as follows

(4.2) W0 =
1
2
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with ro, ay , az being
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(4.5) ro =

√
Jy + Jz

A
+ (ys)

2 + (zs)2

ay =
1
Jy

∫
A

z
(
z2 + y2

)
dA − 2zs

az =
1
Jz

∫
A

y
(
z2 + y2

)
dA − 2ys

while

(4.6) αx =
1
Iω

∫
A

(
z2 + y2

)
ω (y, z) dA

Note that W̃y, W̃z vanish if the cross section is bisymmetric. These extra terms have been
first derived by Zhang & Tong [7–9].

The passage from the spatial formulation in Eq. (2.1) to the one-dimensional form, see Eq. (4.1),
needed additional approximations; the stresses other than σ11

o , σ12
o , σ13

o have been neglected and
the terms involving the derivative ∂u1/∂x1 have been discarded as smaller than other terms.

If the transverse and lateral loads are shifted along the y or z axes, as shown in Fig. 1, then
the potential W0 should be replaced by Ŵ0 extended by two terms, namely

Ŵ0 = W0 (v,w, θ) +Wy (θ) +Wz (θ)(4.7)

Wy (θ) =
e1
2

l∫
0

qy (x) θ2 (x)dx, Wz (θ) =
e2
2

l∫
0

qz (x) θ2 (x)dx(4.8)

where e1 = y1 − ySe2 = z2 − zS see Fig. 1. The derivation of the formulae (4.2)–(4.8) is here
omitted, it will be published in a separate paper, see Czubacki & Lewiński [15].

The Rayleigh quotient method can be extended to the case when the bar’s ends are stiffened
by elastic plates which restrain the warping deformations on the faces: x = 0 and x = l.
According to Eq. (7.130) in Petersen [6, Sec. 7.6.2] the warping stiffness of the end-plate equals

(4.9) Cω =
1
3

Gb
(
tp

)3 hs

where b represents the width of the plate, hs – its height and tp – its thickness; G is the
shear modulus. The elastic energy stored in the end-plate at x = 0 equals, see Piotrowski &
Szychowski [10–13].

(4.10) Wω =
1
2

Cω

(
dθ
dx

����
x=0

)2

and the energy of the plate at the end x = l is expressed similarly. The following non-dimensional
coefficient will be used
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(4.11) Kω =
lCω

2EIω + lCω

to characterize the stiffness of the restraining end-plates, see Piotrowski & Szychowski [10–13].
The formulation (4.1) with the entities expressed by the formulae explained above makes it

possible to solve practically all conceivable problems of stability of a straight bar, which will
be illustrated in the sequel.

4.1. The axial buckling problem

Consider the problem of a bar subjected to compression by the forces P at both the ends;
here σ11

o = −P/A and other stress components may be neglected. The problem of stability
of equilibrium assumes the form of Eq. (4.1) where W is given by Eq. (9.5) in Lewiński &
Czarnecki [1] while the potential W0 reads

(4.12) W0 =
1
2

l∫
0

[(
dw
dx

)2
+

(
dv
dx

)2
+ 2zs

dv
dx

dθ
dx
− 2ys

dw
dx

dθ
dx
+ (ro)2

(
dθ
dx

)2
]

dx

The formula above coincides with the corresponding formula known from Vlasov’s theory
of thin-walled bars of open cross sections, see e.g in Trahair et al [5] in Section 3.7.5 Eq. (3.57).
This paves the way for computing the buckling loads of straight prismatic bars in tension
irrespective of whether their profiles are thin-walled and open or not.

4.2. The lateral buckling problem

If the bar is subjected to two opposite bending moments at its ends the fields Mo
y and

M0
z are constant and the shear forces To

z ,T
o
y are zero. Then the stability problem can be

elementary solved. In general, the shear forces are not zero, the bending moments depend
on the variable x, which makes the problem far more difficult. In practice, only numerical
methods are then applicable. The stability problem has the form (4.1) where W0 can be, upon
using the equilibrium equations, transformed to the form

(4.13) W0 =
1
2

l∫
0

[
d
dx

(
ayθ − 2v

) d
dx

(
θMo

y

)
−

d
dx
(azθ + 2w)

d
dx

(
θMo

z

) ]
dx+W̃y + W̃z

in which the shear forces are not present. The derivation of the above result will be published in
the forthcoming paper by Czubacki and Lewiński [15]. The illustrative examples will concern
mono- and bi-symmetric profiles; their parametrization is shown in Fig. 2.

4.2.1. A fork-supported bar loaded with qz = const
Consider a bar with both ends fork-supported, restrained by the same end-plates at both the

ends and loaded with qz = q = const of application points of coordinates (x, 0, z2) from x = 0
to x = l (see Fig. 3).
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Fig. 2. Parametrization of the bar’s mono-symmetric cross section; y and z are principal axes; position of
the centroid (O) and the shear center (S). Possible point of application of the transverse load qz = q has

coordinates: (x, 0, z2) z2 = e2 + zS

Fig. 3. A fork-supported bar restrained at both the ends, loaded with qz = q = const

In the problem considered: Mo
y =

1
2 qx (l − x), qy = 0, Mo

z = 0; thus, according to (4.1)
one obtains the rule for the critical value of the intensity of the transverse load

(4.14)
1
|qcrit |

= max
over θ,v being
kinematically
admissible

l∫
0

d
dx

(
1
2

ayθ − v
)

d
dx
[x (l − x) θ] dx +

l∫
0

e2θ
2dx −

l∫
0

(
1
2

ay

)
θ2dx

l∫
0

[
E Jz

(
d2v

dx2

)2

+ GJ
(
dθ
dx

)2
+ EIω

(
d2θ

dx2

)2]
dx + Cω

((
dθ
dx

����
x=0

)2
+

(
dθ
dx

����
x=l

)2
)

where E Jz is the bending stiffness, EIω is the warping stiffness due to torsion and GJ is the
torsional stiffness.

Consider the simplest case of a bisymmetric profile (then ay = 0), the case of e2 = 0 and
let the ends being not restrained, i.e. Cω = 0. Let us introduce

(4.15) q0 =
1
l4

√
E Jz · EIω, ξ =

x
l
, γ =

l2GJ
EIω

, θ = l

√
E Jz
EIω

φ, v = lψ

The functions φ (ξ), ψ (ξ) are said to be kinematically admissible when they vanish at both
ends of the bar: φ (0) = φ (1) = 0, ψ (0) = ψ (1) = 0. The critical load qcrit is expressed by
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Eq. (4.1), which reduces now to the form

(4.16)
1����qcrit
qo

���� = max
over φ, ψ being
kinematically
admissible

−

1∫
0

dψ
dξ

d
dξ
[ξ (1 − ξ) φ] dξ

1∫
0

[(
d2ψ

dξ2

)2

+ γ

(
dφ
dξ

)2
+

(
d2φ

dξ2

)2]
dξ

ready for further analytical or numerical treatments.

4.2.2. A fork-supported bar loaded with a point load acting at the middle of the bar
Consider a bar with both ends fork-supported and elastically restrained against warping,

loaded with P acting at the middle of the bar at point (l/2, 0, z2) (see Figs. 1 and 4).

Fig. 4. The fork-supported bar, restrained at the ends, loaded with the load P acting at the middle of the
bar

According to (4.1), (4.13) the critical load corresponding to the lateral-torsional buckling
can be computed by solving the problem:

(4.17)
1
|Pcrit |

= max
over θ,v being
kinematically
admissible

l
2∫
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d
dx
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1
2
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d
dx
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2
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2
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Consider the simplest case of a bisymmetric profile (then ay = 0), the case of e2 = 0 and
let the ends being not restrained, i.e. Cω = 0. Let us introduce the referential force

(4.18) P0 =
1
l3

√
E Jz · EIω

The formula for the critical load Pcrit given by (4.17) reduces now to the form

(4.19)
1����Pcrit
P0

���� = max
φ, ψ being
kinematically
admissible

−

1
2∫

0

dψ
dξ

d
dξ
(ξφ) dξ −

1∫
1
2

dψ
dξ

d
dξ
[(1 − ξ) φ] dξ

1∫
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[(
d2ψ

dξ2

)2

+ γ

(
dφ
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)2
+

(
d2φ

dξ2

)2]
dξ

ready for further analytical or numerical treatments.
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5. A numerical method of maximizing the Rayleigh quotient
The Rayleigh quotient problem (4.1) will be solved numerically. The functions v, w, θ will

be expanded by (truncated) series of orthogonal functions fulfilling the kinematic boundary
conditions. To find the maximum value of the quotient (4.1) the numerical maximization
algorithm can be used, or alternatively, the problem can be rearranged to a generalized
eigenvalue problem of linear algebra.

The critical loads qcrit, Pcrit given by formulae (4.14), (4.17) will be computed by the
Mathematica software. The functions θ (x), v (x) are expanded as follows:

(5.1) v (x) =
n∑

i=1,3,5
Ai sin

(
iπ

x
l

)
, θ (x) =

n∑
i=1,3,5

Bi sin
(
iπ

x
l

)
, Ai, Bi – unknowns

In Table 1 and Table 2 the critical moments Mcr = qcritl2/8, Mcr = Pcritl/4 are set up
respectively, where qcrit, Pcrit are found numerically.

Table 1. Results concerning the problem of Fig. 3. Comparison of critical moments
computed by (4.14) and by LTBeamN

Cross-section Kω e2 (m)
Mcr (kN·m)

LTBeamN Rayleigh
quotient (%)

0
–0.25 239.01 238.97 0.02

0 316.26 316.24 0.01

0.25 418.25 418.17 0.02

0.25
–0.25 252.21 252.36 –0.06

0 329.72 329.80 –0.02

0.25 430.56 430.67 –0.03

0.5
–0.25 273.48 273.78 –0.11

0 351.15 351.36 –0.06

0.25 450.37 450.61 –0.05

0.75
–0.25 313.46 314.81 –0.43

0 391.05 392.35 –0.33

0.25 487.57 488.73 –0.24

1
–0.25 418.76 422.78 –0.96

0 495.20 499.06 –0.78

0.25 585.28 588.98 –0.63

Continued on next page



94 R. CZUBACKI, T. LEWIŃSKI

Table 1 – Continued from previous page

Cross-section Kω e2 (m)
Mcr (kN·m)

LTBeamN Rayleigh
quotient (%)

0
–0.2621 113.57 113.57 0.00

0 156.20 156.20 0.00

0.0379 163.81 163.81 0.00

0.25
–0.2621 114.51 114.53 –0.02

0 157.05 157.06 –0.01

0.0379 164.62 164.64 –0.01

0.5
–0.2621 116.17 116.19 –0.02

0 158.52 158.55 –0.02

0.0379 166.05 166.07 –0.01

0.75
–0.2621 119.82 119.95 –0.11

0 161.77 161.89 –0.07

0.0379 169.17 169.29 –0.07

1
–0.2621 134.48 135.26 –0.58

0 174.50 175.16 –0.38

0.0379 181.42 182.04 –0.34

Table 2. Results concerning the problem of Fig. 4. Comparison of critical moments
computed by (4.17) and by LTBeamN

Cross-section Kω e2(m)
Mcr (kN·m)

LTBeamN Rayleigh
quotient (%)

0
–0.25 269.61 269.61 0.00

0 380.89 380.69 0.05

0.25 533.83 534.36 –0.10

0.25
–0.25 283.85 283.89 –0.01

0 396.10 396.50 –0.10

0.25 549.91 550.55 –0.12

Continued on next page
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Table 2 – Continued from previous page

Cross-section Kω e2(m)
Mcr (kN·m)

LTBeamN Rayleigh
quotient (%)

0.5
–0.25 306.31 306.54 –0.08

0 421.19 421.51 –0.08

0.25 576.21 576.22 0.00

0.75
–0.25 348.01 349.31 –0.37

0 467.05 468.68 –0.35

0.25 624.11 625.35 –0.20

1
–0.25 453.80 458.20 –0.97

0 584.79 588.86 –0.70

0.25 748.93 753.16 –0.56

0
–0.2621 125.70 125.76 –0.05

0 193.00 193.08 –0.04

0.0379 206.08 206.14 –0.03

0.25
–0.2621 126.56 126.59 –0.02

0 194.04 194.05 –0.01

0.0379 207.06 207.14 –0.04

0.5
–0.2621 127.98 128.01 –0.02

0 195.75 195.74 0.01

0.0379 208.77 208.84 –0.03

0.75
–0.2621 131.18 131.30 –0.09

0 199.41 199.55 –0.07

0.0379 212.55 212.71 –0.08

1
–0.2621 143.99 144.71 –0.50

0 213.98 214.75 –0.36

0.0379 227.37 228.09 –0.32

The analysis is applied to the symmetrical beam section IPE500 (Iz = 2141.7 cm4, IT =
89.006 cm4, Iω = 1254300 cm6) and to the mono-symmetrical beam section DIM 300×200 M
(Iz = 1479, 4 cm4, IT = 65.91 cm4 Iω = 105563 cm6, ay = −20.32 cm having the span length
of l = 8 m andmade by material of moduli: E = 210 GPa, G = 81 GPa. The results obtained by
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the chosen truncated series, are compared with the results obtained by the shareware program
LTBeamN v 1.0.3, which is a newer version of the program LTBeam [16]. It is worth noting that
the value of Kω affects the speed of convergence of the method. To achieve a uniform accuracy
the number of terms n has been appropriately correlated with Kω . For Kω = 0, 0.25, 0.5, 0.75, 1
we choose n = 11, 11, 40, 40, 80 respectively. The differences between the results found by
LTBeamN and those predicted by the method proposed are less than 1%, cf Tables 1, 2.

6. Conclusions

The proposed method of assessing the values of the critical loads makes it possible to
re-derive all the standard formulae for the critical axial forces (e.g. Euler’s formula) and critical
bending moments (Timoshenko’s and Vlasov’s formulae). It is worth stressing that all these
formulae can be derived for bars of non-standard shape of cross sections, even multi-connected,
since the assumptions of the Vlasov theory are here replaced by general Saint Venant solutions.
Moreover, incorporation of elastic restraints against warping at the bar ends is possible.

Our study was based on the linearized elastic stability formulation. Possible extensions
towards nonlinear stability analysis of bisymmeric thin-walled beams have been proposed in
the recent papers by Giżejowski et al. [17, 18].
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Zastosowanie metody ilorazu rayleigha do analizy stateczności
sprężystych prętów prostych

Słowa kluczowe: pręty cienkościenne, stateczność, teoria prętów, wyboczenie giętno-skrętne

Streszczenie:

W pracy korzystamy z faktu, że teoria Własowa prętów cienkościennych o przekrojach otwartych
została rozszerzona do postaci teorii typu Własowa odnoszącej się do praktycznie dowolnych kształtów
profili pod warunkiem, że profile te nie doznają dystorsji poprzecznych przy typowych obciążeniach pręta.
Struktura matematyczna modelu typu Własowa jest zgodna z oryginalnym modelem Własowa, natomiast
charakterystyki przekrojowe są obliczane za pomocą innych formuł, które wymagają uprzedniego
rozwiązania trzech pomocniczych zadań eliptycznych na obszarze określonym przez przekrój poprzeczny
pręta. Ponadto zupełnie inne są wtedy formuły obliczania składowych stanu naprężenia na podstawie
rozwiązań w ramach opisu jednowymiarowego, czyli całkowicie inny jest tzw. postprocessing tej metody.
Matematyczna analogia między dwoma modelami teorio-prętowymi: Własowa i typu Własowa otwiera
drogę do konstruktywnego rozwiązywania zadań stateczności: opisu wyboczenia giętno-skrętnego,
wyboczenia od obciążeń skrętnych oraz zwichrzenia przy różnych możliwych warunkach brzegowych.
Znane zadania stateczności prętów cienkościennych o przekrojach otwartychmogą być teraz uogólnione na
przypadek prętów o dowolnych przekrojach zwartych, także niejednospójnych. Szczególnego znaczenia
nabiera tu metoda maksymalizacji ilorazu Rayleigha, gdyż maksimum jest brane po trzech polach
jednowymiarowych (dwa pola przemieszczeń i pole rozkładu kąta skręcenia), które spełniają warunki
kinematyczne, są więc niezależne od nieznanego obciążenia krytycznego. Podkreślmy, że właśnie w
tym tkwi istota metody ilorazu Rayleigha. W pracy podane są jawne postacie ilorazów Rayleigha
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odnoszące się do wybranych postaci obciążeń. Formuły te mają postać podobną do formuł z publikacji:
L. Zhang, G.S. Tong, “Flexural-torsional buckling of thin-walled beam members based on shell
buckling theory”, Thin-Walled Structures, vol. 42, pp. 1665–1687, 2004, dotyczącej teorii prętów
Własowa o przekroju otwartym. Podane są metody maksymalizacji ilorazów Rayleigha zapewniające
dowolnie wysoką dokładność wyników. Opracowana metoda dotyczy dowolnych warunków podparcia,
jednakże porównania przeprowadzono w przypadku standardowych zadań stateczności prętów podpartych
widełkowo (z blachami czołowymi które wprowadzają więzy dotyczące spaczenia od skręcania), których
wyniki są znane i akceptowane.
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