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NUMERICAL MODELING OF DIAGONAL CRACKS IN CONCRETE BEAMS

M. SŁOWIK1, P. SMARZEWSKI2

In the paper, the method of a numerical simulation concerning diagonal crack propagation in con-
crete beams was presented. Two beams reinforced longitudinally but without shear reinforcement 
were considered during the Finite Element Method analysis. In particular, a nonlinear method was 
used to simulate the crack evaluation in the beams. The analysis was performed using the com-
mercial program ANSYS. In the numerical simulation, the limit surface for concrete described 
by Willam and Warnke was applied to model the failure of concrete. To solve the FEM-system of 
equations, the Newton-Raphson method was used. As the results of FEM calculations, the trajecto-
ries of total stains and numerical images of smeared cracks were obtained for two analyzed beams: 
the slender beam S5 of leff = 1.8 m and the short beam S3k of leff = 1.1 m. The applied method 
allowed to generate both fl exural vertical cracks and diagonal cracks in the shear regions. Some 
differences in the evaluation of crack patterns in the beams were observed. The greater number 
of fl exural vertical cracks which penetrated deeper in the beam S5 caused the lower stiffness and 
the greater deformation in the beam S5 compared to the short beam S3k. Numerical results were 
compared with the experimental data from the early tests performed by Słowik [3]. The numerical 
simulation yielded very similar results as the experiments and it confi rmed that the character of 
failure process altered according to the effective length of the member. The proposed numerical 
procedure was successfully verifi ed and it can be suitable for numerical analyses of diagonal crack 
propagation in concrete beams.
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1. INTRODUCTION

Brittle failure takes place mostly in the materials in which stress relaxation cannot oc-
cur as a result of a dissipation process at the top of the crack. The most known brittle 
materials are ceramics, glass and hardened steel. Concrete is generally considered as 
quasi-brittle material because some plastic strains can develop during cracking. How-
ever, in some cases concrete behaves in a more brittle manner. Not only mechanical 
properties determine the mode of failure. In large scale concrete members, the devel-
opment of plastic strain is limited and the fracture process has brittle character. Also 
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a decrease of temperature causes a decrease of plastic response and then concrete may 
work as a brittle material. These problems have been described for example by Brandt 
[1], Bažant and Planas [2].

The low tensile strength of concrete puts limits to the use of plain concrete in 
building structures. Therefore, concrete is usually reinforced and the general aim of 
reinforcement in members made of concrete is to carry tensile stress, to limit crack 
widths and to protect against brittle failure. Tensile strength is often disregarded in de-
sign for the Ultimate Limit State of reinforced concrete structures. But there are still 
a few design problems where tensile capacity is of paramount importance. One of them 
is so-called “shear failure” – a failure under combined shearing force and bending mo-
ment that takes place in fl exural members. In longitudinally reinforced concrete beams 
without shear reinforcement, this type of failure reduces the strength and the ductility 
of the structural member. 

The problem of shear failure in reinforced concrete beams without shear reinforce-
ment was investigated experimentally and presented by Słowik [3]. It was found that 
the character of shear failure and diagonal crack propagation in the beams changed 
according to the shear span-to-depth ratio a/d and the scale of the member. To analyze 
the infl uence of those parameters on failure process, numerical simulations were per-
formed. A linear elastic analysis was applied (Słowik, Nowicki [4]) to investigate the 
infl uence of a/d on diagonal crack propagation and a nonlinear analysis was carried out 
(Słowik, Smarzewski [5]), in which the changing parameter was the effective length of 
the beams.

It is a challenging task to model cracks in reinforced concrete members, especially 
when several cracks appear in the member. When modeling fracture mechanism, the 
nonlinear characteristic of concrete and reinforcing steel, in particular the softening of 
the materials, should be considered. Another complication arises at modeling the bond 
between concrete and steel. Furthermore, local large strain concentrations, which infl u-
ence cracking and crushing in concrete, must be considered. To solve this complicated 
problem, a spatial model should be built, a three-dimensional stress-strain state should 
be considered and, last but not least, the proper method of solving the FEM-system of 
equations should be applied. 

In the paper, the procedure of numerical modeling of diagonal cracks in longitu-
dinally reinforced concrete beams is presented. This procedure has been applied in 
a numerical simulation in order to verify it. The comparison of the obtained numerical 
results with the test results is also discussed in the paper. 

2. NUMERICAL SIMULATION

In the performed numerical analysis, two beams corresponding to the tested members 
were modeled: one half of the beam S5 of leff = 1.8 m and the whole beam S3k of 
leff = 1.1 m. The beams had the rectangular cross-section of the width b = 0.12 m, the 
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total depth h = 0.25 m, and the effective depth d = 0.22 m. The beam specimens were 
tested as simply supported beams under three-point bending. They were made from 
concrete of the compressive strength fc = 32.7 MPa, the tensile strength fct = 3.0 MPa, 
the Young’s modulus Ec = 37650 MPa. Two deformed steel bars with diameters of 
18 mm were used as the bottom longitudinal reinforcement in the beams. The yield 
stress of the steel was fy = 453 MPa and the tensile strength was ft = 698 MPa. More 
details of the performed experimental investigation can be found in [3].

The Finite Element Method calculations were performed using the ANSYS pro-
gram. Eight-node solid elements were used to model the concrete. They were taken 
from the library of the ANSYS program. Every node of the solid element had three 
degrees of freedom – translation in the nodal x, y and z direction. The solid element 
was capable of describing plastic behavior, cracking and crushing of concrete in three 
axes of orthogonal system. Stress and strain components were calculated at integration 
points. The discrete model of reinforcement was applied. Reinforcing bars were mod-
eled by three-dimensional bar elements. The connection between concrete and steel was 
established as identical displacement of connected nodes (see Figure 1).

 

   shared node

concrete element
concrete node 

reinforcement element

DISCRETE MODEL

Fig. 1. Discrete model for reinforcement

A rectangular mesh was applied to model the beams. This kind of mesh is recom-
mended when solid elements are used in numerical simulations. The FEM-meshes for 
both beams are presented in Figure 2.
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Fig. 2. FEM – mesh for beams S3k and S5
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The description of limit state of concrete under static and dynamic loading has been 
the subject of numerous papers. Limit surfaces for concrete were described for example 
by Willam and Warnke [6], Ottosen [7], Klisiński [8], Podgórski [9], Stolarski [10], 
Bobiński and Tejchman [11], Widuliński et al. [12], Jankowiak and Łodygowski [13]. 
In the paper, Willam and Warnke criterion described in [6] was chosen to model the 
failure of concrete. This criterion allows applying the nonlinear response of concrete for 
triaxial behavior. It is defi ned as:

 S
f
F

c
,

where F is the function of stress conditions σxp,σyp,σzp, in the direction of the Cartesian 
coordinate system x,y,z; S is the failure surface and fc is uniaxial compressive strength 
causing crushing. The failure surface depends on principal stresses σ1,σ2,σ3, where: 
σ1≥σ2≥σ3, σ1 = max(σxp,σyp,σzp), σ3 = min(σxp,σyp,σzp), and on strength parameters: 
ft  – uniaxial tension strength causing cracking; fcb – ultimate biaxial compressive 
strength causing crushing; f1 – ultimate compressive strength for a state of biaxial com-
pression superimposed on hydrostatic stress state a

h ; f2 – ultimate compressive strength 
for a state of uniaxial compression superimposed on hydrostatic stress state a

h . The 
geometrical interpretation of the criteria is shown in Figure 3.
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Fig. 3. The limit surface

The failure of concrete can be distinguished as the state of cracking when any prin-
cipal stress is tensile or as the state of crushing when all principal stresses are compres-
sive.
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In the state of compression – compression – compression, function F, correspond-
ing to average tangential stress which is directly proportional to the second invariant of 
deviator, has the form:

(2.1) 
11F F   

and the elliptical failure surface S is described on the basis of geometrical considera-
tions in polar coordinates r,θ by the expression:

(2.2) 

1

1
c c t c t c c t t t c

c t c t

r r r r r r r r r r r
S S

r r r r
  

in which the angle θ corresponds to the third invariant of deviator; rt and rc are devi-
atoric sectional radii. Deviatoric sectional radius rt is determined by the parameters  
a0,a1,a2 selected in such a way that ft, fcb, f1 are located on the limit surface. The second 
deviatoric sectional radius rc is expressed by the parameters b0,b1,b2 determined from 
the compression along the meridian for an angle θ = 60o .
In the state of tension – compression – compression, function F is written in the form:

(2.3) 
11F F   

and S is defi ned by the equation: 

(2.4)  
 

1

11
c c t c t c c t t t c

t c t c t

p p p
S S

f p p
 

In the Eq. (2.4), pt and pc are given by formulas:

 tp a a a   cp b b b   

in which a0,a1,a2 and b0,b1,b2 are defi ned as in the Eq. (2.2), whereas χ is
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 1  

In the state of tension – tension – compression, functions F and S adopt the forms:

(2.5) iF F 1i   1t

c c

fS S
f f

  

In the state tension – tension – tension, functions F and S are defi ned as: 

(2.6) iF F 1i  t

c

fS S
f

  

More details about the limt surface of concrete were presented by Smarzewski in [14].
Uniaxial stress-strain relationships for concrete in compression and in tension, and for 
reinforcing steel in tension are presented in Figure 4. 

Stress-strain characteristic for concrete in compression σc – εc was adopted in nu-
merical simulation on the basis of the Desayi and Krishnan proposition presented in 
[15]: 

 

1

1

c c
c

c

c

E  1
c

c
c

f
E

  

where: εc 1 is the strain corresponding to the limit compressive strength fc  and Ec is the 
modulus of elasticity for concrete.
In Figure 4a, the strain in point 1 indicates the end of the region of non-cracked concrete 
elasticity. After reaching point 4, perfectly-plastic behavior of concrete is assumed. In 
the description of tensile concrete (Figure 4b), the stiffness multiplier for cracked ten-
sile condition, Tc =0.6, is used to include tensile stress relaxation after cracking. The 
softening effect of tensile concrete is considered by using the declining stress curve 
characterized by Rt. The steel is assumed to be a multilinear isotropic hardening mate-
rial as presented in Figure 4c.
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Fig. 4. Stress-strain relationships for materials: a) concrete in compression, b) concrete in tension, c) steel 
reinforcement in tension

In FEM-calculations, cracking occurred in the concrete element when tensile stress 
in any direction laid outside the failure surface, and then elastic modulus in the direction 
parallel to the principal tensile stress direction fell down to zero. Crushing occurred 
when three principal compressive stress components were outside the failure surface 
and then the element effectively disappeared. A cracking sign was represented by a cir-
cle (as shown in Figure 5) and it appeared at the integration point when principal tensile 
stress reached the ultimate concrete tensile strength. If any crack opened and closed, it 
was shown as a circle with a cross inscribed in the graphical representation of the crack. 
Cracks at any point of numerical integration were marked as the circles of different 
colours: red for the fi rst crack, green for the second crack, blue for the third crack. 
Crushing of the material was presented as the octahedron. The sign described in the 
middle element showed the actual status of the destruction of the material in the fi nite 
element. For the numerical balance in the fi nite element in the state of concrete cracking 
or crushing, a small value of stiffness was added.
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Fig. 5. Cracking outline

The matrix of elasticity for an isotropic material Dc is represented in the form:

(2.7) 

c c c

c c c

c c c

cc

c c
c

c

E
cD   

where vc is the Poisson’s ratio.
The creation of a crack at the point of numerical integration was described by modifi ed 
stiffness matrix in which the weakened plane located perpendicular to the cracking sur-
face was incorporated. The parameter βt is a multiplier used for reducing shear transfer 
causing slip in the plane perpendicular to the surface cracks. The relationship between 
stress and strain of the material cracked in one plane is written in the form of a matrix:
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(2.8) 
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All the compressive normal stresses in the cracked plane are transferred across the 
crack during its closing. In the matrix ck

cD   shear parameter βc is introduced, when the 
cracks close: 

(2.9)  

c c c

c c c

c c c

c c
c

c c
c

c c

Eck
cD  

Stiffness matrix for concrete cracked in two and three dimensions is of the form:
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(2.10) 
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When the cracks close in two or three planes, the relationship is expressed in a matrix 
form Eq. (2.9). The relationship between stress and strain for concrete cracked in three 
dimensions is written as a matrix Eq. (2.10).

The matrix element ck
cD  is used to transform the local coordinate system to the 

global one:

 
Tck ck ck

c cD T T D   

where Tck is the transformation described by Suidan and Schnobrich [16].
Opening or closing of cracks at the point of numerical integration depends on the 

sign of the cracking strain. A crack is closed when the value of the cracking strain ck
ck   

is less than zero, and it is opened in the opposite case. The shear transfer coeffi cient 
βt = 0,5 is used to represent shear strength reduction for the load of a sliding develop-
ment and the shear transfer coeffi cient βc = 0,9 is used to initiate crack’s closing. Con-
crete crushing at the point of numerical integration occurs when it is destructive upon 
uniaxial, biaxial and triaxial compression. Crushing in the fi nite element is described 
on the basis of the plastic fl ow theory. In the area of crushed material, a further load 
increase causes strain growth at the constant residual stress.

To solve the FEM-system of equations, the Newton-Raphson method was applied, 
as described by Bathe [17], Zienkiewicz and Taylor [18], Bonet and Wood [19], Cris-
fi eld [20]. After meshing into fi nite elements, the following system of algebraic equa-
tions was created:

 Ku = Fa, 
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in which K is the coeffi cient matrix; u is the generalized displacement vector in three 
orthogonal directions; Fa is the generalized load vector.
Newton-Raphson method represents an iterative process of solving nonlinear equations: 

(2.11) T a nr
i i iK   

(2.12) 1i i iu u   

where: T
iK  is the tangent stiffness matrix; index i corresponds to the number of the 

incremental step; nr
iF  is the vector of restoring loads representing the element internal 

loads in the discretized system. The method is shown graphically in Figure 6:
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Fig. 6. Newton-Raphson method

Matrix T
iK  and vector nr

iF  are calculated on the basis of the displacement vector ui. The 
right side of Eq. (2.11) is called the unbalanced load vector. The solution is converged 
as a result of at least one iteration, when the vector of internal nodal forces nr

iF at the 
current state of stress is equal to a generalized load vector Fa or a tolerance of solution 
is maintained.

3. RESULTS AND DISCUSSION

As a result of FEM calculations, the dislocations of nodes and stress components 
along three axes of the global coordinate system were obtained. On the basis of the 
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numerical results, trajectories of total strains were generated by ANSYS program. The 
trajectories for both beams, the beam S3k of leff = 1.1 m and the S5 of leff = 1.8 m, in 
the subsequent load stages are presented in Figure 7. The trajectories indicated also the 
view of principal stress streams in the analyzed beams. When comparing strain distri-
bution in the short beam and in the longer beam we can observe some differences in the 
damage process depending on the beam’s length. These differences can be noticed when 
the evaluations of crack patterns are juxtaposed (see Figure 8). Here we can analyze 
very precisely the process of cracks evaluation. The fi rst cracks occurred in the middle 
of the beam span and they propagated in the vertical direction. When the load reached 
approximately 40 kN the shear stress made some fl exural cracks in the shear regions 
change their orientation and become diagonal cracks. With the further load increase, the 
compressive cracks appeared in the region where the load was applied. A similar cracks 
evaluation was observed during the test. 

 

   F =20,1 kNcr

  F=40 kN

   F=60 kN

   F=80 kN

BEAM S3k   

  F =17,7 kNcr

  F=40 kN

   F=60 kN

   F=80 kN

BEAM S5   

Fig. 7. Strain trajectories for beams S3k and S5 at different load levels
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Fig. 8. Evolution of crack patterns for beams S3k and S5

According to the obtained strain distributions, the following zones of stress state can 
be distinguished in the beams: bending zone in the mid span; shear-bending zone in the 
region of diagonal cracks; shear-compression zone in the upper part of the beam near 
the applied forces. The intensity of strain in the following zones indicated what kind of 
damage process predominated in the beams. The increase of strains in the shear-bending 
zone was more intensive in the beam S5, which marked sudden failure. A similar obser-
vation was made during the experiment where the failure had more brittle character in 
the longer beam.

A good agreement is also seen when comparing the numerical images of smeared 
cracks and the strain distribution with the fi nal crack patterns observed during the ex-
periment under ultimate load (see Figure 9). It can be concluded that the numerical 
model, which was used in the numerical simulation, can be applied for the analysis of 
diagonal cracks in reinforced concrete members. 

It was observed that the FEM-calculations were in good agreement with the experi-
mental results for both analyzed beams. In the numerical simulation, a lower defl ection 
in the middle of the beam was obtained in the beam S5 compared to the short beam 
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S3k. This fact can be explained by the lower stiffness in the beam S5 due to the greater 
number of fl exural vertical cracks which penetrated deeper in the beam S5 compared 
to the short beam S3k. The numerical simulation yielded very similar results as the 
experiments and it confi rmed that the character of failure process altered according to 
the effective length of the member.
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Fig. 9. Cracks pattern – comparison of numerical and experimental results
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4. CONCLUSIONS

In this paper, the procedure for numerical modeling of diagonal cracks in concrete 
beams has been presented. The numerical results obtained for two beams of different 
leff were successfully confronted with the experimental results. The strain trajectories 
describe accurately the crack development in the beams. It can be concluded that the 
numerical model, which was used in numerical simulation, can be applied for analysis 
of diagonal cracks in reinforced concrete members. 

Although the applied model gives realistic results, the authors plan to improve the 
numerical simulation. It has been noticed that the Newton-Raphson method, which was 
used in the performed numerical analysis, has some disadvantages. It is not adequate for 
materials of higher nonlinear characteristic. The experimental investigation performed 
by Ashour [21], Rashid and Mansur [22], showed that stress in the tension zone after 
cracking was not compensated by elastic steel response and plastic concrete response 
in compression zone, and therefore some softening effects were observed on load-de-
fl ection curve as a rapid decrease of load. In numerical simulations those effects can be 
obtained by using an arc-length algorithm described by Riks [23] and Crisfi eld [24]. 
This algorithm allows generating a complete path of solution with local stiffness de-
crease and global softening. 

Further research should be encouraged to analyze the diagonal crack propagation 
process in longitudinally reinforced concrete members. It is planned to use the arc-
length method described by Crisfi eld [24] in combination with the Newton-Raphson 
method, to trace the complete response in load-deformation space. It seems that this 
modifi ed method can be effectively applied to the static deformation mechanism analy-
sis of various reinforced concrete members under complex stress states.

REFERENCES

 1. A. M. BRANDT, Cement Based Composites. Materials, Mechanical Properties and Performance, 2nd 
edition, Taylor & Francis, London and New York, 2009.

 2. Z. P. BAŽANT, J. PLANAS, Fracture and Size Effect in Concrete and Quasibrittle Materials, CRC Press 
LLC, Boca Raton, 1998.

 3. M. SŁOWIK, Experimental study of shear failure mechanism in concrete beams, Brittle Matrix 
Composites 10, IFTR and Woodhead Publishing Limited, Warsaw, 345–354, 2012 (proceeding of the 
Tenth International Symposium on Brittle Matrix Composites).

 4. M. SŁOWIK, T. NOWICKI, The Analysis of Diagonal Crack Propagation in Concrete Beams, 
Computational Materials Science, 52, 261–7, 2012.

 5. M. SŁOWIK, P. SMARZEWSKI, The Study of the Scale Effect on Diagonal Crack Propagation in Concrete 
Beams, Computational Materials Science, 64, 216–20, 2012.

 6. K. J. WILLAM, E. P. WARNKE, Constitutive Model for the Triaxial Behavior of Concrete, proceedings, 
International Association for Bridge and Structural Engineering, Vol. 19, ISMES, Bergamo, Italy, 1–30, 
1975.



M. SŁOWIK, P. SMARZEWSKI322

 7. N. S. OTTOSEN, A Failure Criterion for Concrete, Journal of the Engineering Mechanics Division, 
American Society of Civil Engineering, 103 (EM 4), 527–535, 1977.

 8. M. KLISIŃSKI, Degradation and plastic deformation of concrete (in Polish), Institute of Fundamental 
Technological Research Polish Academy of Sciences Report 38, Warsaw, 1984.

 9. J. PODGÓRSKI, Critical States in Solids with Internal Friction (in Polish), Institute of Fundamental 
Technological Research Polish Academy of Sciences Report 25, Warsaw, 1986.

 10. A. STOLARSKI, Dynamic Strength Criterion for Concrete, Journal of Engineering Mechanics, ASCE, 
130, 1428–1435, 2004.

 11. J. BOBIŃSKI, J. TEJCHMAN, Modelling of size effects in concrete using elasto-plasticity with non-local 
softening, Archives of Civil Engineering, 52, 1, 7–35, 2006.

 12. Ł. WIDULIŃSKI, J. BOBIŃSKI, J. TEJCHMAN, FE-analysis of spacing of localized zones in reinforced concrete 
bars under tension using elasto-plasticity with non-local softening, Archives of Civil Engineering, LV, 
2, 257–281, 2009.

 13. T. JANKOWIAK, T. ŁODYGOWSKI, Quasi-static failure criteria for concrete, Archives of Civil Engineering, 
LVI, 2, 123–154, 2010.

 14. P. SMARZEWSKI, Modeling of Static Behavior of Inelastic Reinforced High-Strength Concrete Beams (in 
Polish), Monographs – Lublin University of Technology, 2011.

 15. P. DESAYI,, S. KRISHNAN, Equation for the Stress-Strain Curve of Concrete, Journal of the American 
Concrete Institute, 61, 345–350, 1964.

 16. M. SUIDAN, W. C. SCHNOBRICH, Finite Element Analysis of Reinforced Concrete, Journal of the Structural 
Division, ASCE, ST10, 2109–2122, 1973.

 17. K. J. BATHE, Finite Element Procedures, Prentice-Hall, Inc., Upper Saddle River, New Jersey, 1996.
 18. O. C. ZIENKIEWICZ, R. L. TAYLOR, The Finite Element Method for Solid and Structural Mechanics, 

6th edition, Elsevier Butterworth Heinemann, Oxford, UK, 2005.
 19. J. BONET, R. D. WOOD, Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge 

University Press, Cambridge, UK, 1997.
 20. M. A. CRISFIELD, Non-Linear Finite Element Analysis of Solids and Structures, John Wiley & Sons, Inc., 

Chichester, UK, 2000.
 21. S. A. ASHOUR, Effect of Compressive Strength and Tensile Reinforcement Ratio on Flexural Behaviour 

of High-Strength Concrete Beams, Engineering Structures, 22, 413–423, 2000.
 22. M. A. RASHID, M. A. MANSUR, Reinforced High-Strength Concrete Beams in Flexure, ACI Structural 

Journal, 102, 462–471, 2005.
 23. E. RIKS, An Incremental Approach to the Solution of Snapping and Buckling Problems, International 

Journal of Solids and Structures, 15, 529–551, 1979.
 24. M. A. CRISFIELD, An Arc-Length Method Including Line Searches and Accelerations, International 

Journal for Numerical Methods in Engineering, 19, 1269–1289, 1983.

Received: 14.03.2014
Revised: 21.09.2014


