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ON A CERTAIN METHOD OF SELECTION OF DOMAIN FOR FINITE ELEMENT
MODELLING OF THE LAYERED ELASTIC HALF-SPACE IN THE STATIC

ANALYSIS OF FLEXIBLE PAVEMENT

M. NAGÓRSKA1

In the flexible road pavement design a mechanistic model of a multilayered half-space with linear
elastic or viscoelastic layers is usually used for the pavement analysis.
This paper describes a domain selection for the purpose of a FE model creating of the linear
elastic layered half-space and boundary conditions on borders of that domain. This FE model
should guarantee that the key components of displacements, stresses and strains obtained using
ABAQUS program would be in particular identical with those ones obtained by analytical method
using VEROAD program.
It to achieve matching results with both methods is relatively easy for stresses and strains. However,
for displacements, using FEM to obtain correct results is (understandably) highly problematic due
to infinity of half-space. This paper proposes an original method of overcoming these difficulties.
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1. I. R ,      

The mechanistic model of a multilayered half-space with linear elastic or viscoelastic
layers is usually used for the pavement analysis in the process of flexible pavement
structure design. Proposed by B [1] and developed to by many authors this
model is also recommended in legal regulations [2].

The acting of standard single tyre of a heavy vehicle is usually applied as a load
of the pavement. The load can be distributed uniformly over the circular area or in
another way. In the first case it is possible to find the solution of the problem of static
and quasi-static deformation (with the use of cylindrical coordinates) by the means of
analytic method (F-H transform included – see [3]). Both BISAR program
[4] (for elastic deformation) and VEROAD program [5] (for viscoelastic and elastic
deformation) are based on this solution.

Finite Element Method (FEM) is used for solving the above problem too, espe-
cially when conditions for analytical method application are not met – namely when
tyre-pavement contact area is not assumed as circular and the load is not assumed to
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be distributed uniformly (like in [6], where the contact of the tyre with the pavement
is modelled by a set of rectangles and varying load intensities to build a 3D model).

However, while building a FE pavement model based on a infinite material continu-
um model, the key problem is to properly select a bounded subdomain D and boundary
conditions on its borders (except of the top surface where the load of pavement is done).
These would be the subject of FE modelling, including assumption of finite element
shapes and sizes, node positioning, degrees of freedom, integration method etc. The
research shows that for the deformation of a cuboid-shaped domain D= V and for a
rotationally symmetric (RS) deformation of a cylindrical domain D= W , when load
acts in the vertical direction and is uniformly distributed over a circular area C on the
top of W or V domain, the important values (also maximal) of key stresses and strains
stabilize as the domain size expands, whereas these values of vertical displacements
(maximal pavement surface deflections included) do not exhibit such behaviour.

Numerous works regarding the use of FEM in pavement analysis either disregard
the above question or assume FE model parameters a priori with neither substantiation,
nor verification or validation. Moreover, assumed parameters are not confirmed as
valid in calculations made for the purpose of this paper. Only in the work [7], in
a comprehensive finite element meshes and domain selection analysis, this issue is
approached in greater detail. For the vertical load uniformly distributed over a circular
area C , the length (and width respectively) l of said domain is recommended to be of at
least 40r and depth (height) h is recommended to be of 140r are for both rotationally
symmetric and 3D models, where r is the radius of the loaded area C . While the first
of the recommended values is acceptable, calculations show that assuming such a high
h value is not necessary as it makes for a complex computational problem (which is
especially important in 3D modelling). All results important in pavement design are
correct since h = 45r, apart from vertical displacements values which do not achieve
the sufficient accuracy even for the recommended l = 40r and h = 140r.

Similarly, different boundary conditions on the borders of the domain D (except
for the top surface) are assumed with no explanation and in isolation from the size
of that domain. The paper [7] is again the only one which contains recommendations
for the support conditions of the domain D (in connection with the proposed domain
size under the base load). All degrees of freedom at the bottom of the domain D are
constrained, while the side surfaces are constrained only in the direction perpendicular
to these surfaces; but, as this research shows, assuming identical boundary conditions
on side and bottom borders causes negligible differences in results, if the sizes of D
are sufficient for accurate calculation of strains and stresses. According to the Author
of [7], using infinite elements on the borders of domain D allows for a substantial (up
to 50%) reduction of D size while preserving accuracy of results. Unfortunately, most
professional engineering programs do not provide infinite elements. Besides, infinite
elements are not proper for nonlinear problems.
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To specify research subject of the paper, the following was assumed:
1. A segment of a typical (representative for discussed problems) flexible road pave-

ment (P) is considered, with construction layers (including the soil stabilized course)
that are of constant thickness, materially homogeneous and perfectly bonded, onto
which a vertical load of a standard tyre is applied;

2. A mathematical-physical (mechanistic) model of the pavement (P) (a referential
model – RM) is a classic material continuum in the form of a layered half-space (C)
with linearly elastic, homogeneous, isotropic layers of constant thickness modelling
pavement construction layers and a layer of infinite thickness modelling pavement
subsoil, and with full continuity conditions of displacements reflecting perfect bond
between layers;

3. Continuum (C) is statically loaded over the upper boundary surface S , the load is
distributed uniformly over a circular area C with radius r, perpendicularly to S , and
with resultant equals to the wheel load P.
The task posed for this work was the efficient determination of the static deforma-

tion of the pavement (P) using FEM, ergo the deformation of the half-space (C). To
this aim, a cylindrical (prismatic) domain D was virtually separated from the medium
(C) (to build FE model of (C)), in such manner that the domain (cylindrical) D has a
cross-section (arbitrary) F and the height h, upper base F0 contained in the surface S ,
bottom base Fh parallel to S , and side surface B perpendicular to S . The centre C of
base F0 of domain D is in the centre of loading area C (Fig. 1.).

Fig. 1. The domain selected for FEM analysis of pavement.

Unauthenticated | 89.67.242.59
Download Date | 5/12/13 6:08 PM



480 M. Ń

The objective of the paper is to present a way of finding the height h of the domain
D, respectively to the assumed shape and sizes of its cross-section F and to properly
assign the boundary conditions on boundary surfaces Fh and B – so that the solution of
the described problem obtained using FEM by means of ABAQUS/Standard program
[8] was in particular sufficiently similar to the exact, analytical, RM based solution
(i.e. for the layered half-space (C)), obtained using VEROAD program.

The presented method is based on some general premises and exemplary data for
the domain D= W of a circular cross section (a rotationally symmetrical computational
model – RS), in relation to RM model of pavement (P) (i.e. for the half-space (C)) and
in relation to an “auxiliary”, homogeneous and isotropic, linearly elastic half-space (H)
loaded in the same way as medium (C) is. Next, the method was directly verified with
the domain D=V of a rectangular cross section (a 3D computational model) in relation
to the RM model of pavement (P). Finally, it was indicated that there are possibilities
to expand the scope of application of the proposed scheme of domain D selection.

In section 2, detailed description of an exemplary typical pavement is given, as well
as data concerning this pavement’s referential model RM (i.e. the layered half-space
(C)) and the auxiliary homogeneous and isotropic half-space (H). The external load is
also specified and important parameters of finite element models (built for considered
here domain D shapes and sizes and boundary conditions on Fh and B borders of D) are
precisely stated. This includes finite element shapes and sizes, node positioning, degrees
of freedom, integration method etc. These elements have been adequately studied and
already verified in [9] – [12], the results of which are used here respectively. Similar
assumptions were applied in this respect in the monograph [13].

Section 3 focuses on the key problem of proper selection of the domain D with
appropriate support conditions on its boundary surfaces Fh and B. A certain sequence
of steps is proposed which leads to precise enough results of the key values describing
deformation and effort of considered pavement.

Section 4 contains a summary and conclusions, as well as some potential appli-
cations and expansion directions of the presented method, which are not discussed in
the main body of the paper.

It is worth adding that the general methodological basis for the verification and
validation of computational models, including the use of FEM are discussed in the pa-
per [14]. On the other hand, FE computational models in use in physical (mechanistic)
plate models of rigid (concrete) pavement were analyzed, among others, in the works
[15] and [16].

2. D   

Consider a typical, representative, flexible layered pavement loaded with a single heavy
vehicle tyre, as presented in Fig. 2.
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A material continuum in the form of a layered half-space (C) is used as a mecha-
nistic model (referential model RM) as stated in section 1. It consists of homogeneous
and isotropic layers made of Hookean material, that model pavement layers (as shown
in Fig. 2.) of constant construction layers’ thickness and infinite sub-grade thickness.
Onto these layers a vertical uniform load of intensity p = 650 kPa is applied on circular
area C that has radius r and is a part of upper surface S (Fig. 1.), where

(2.1) r =
√

P/p/π = 0, 1565m

where resultant tyre pressure is P = 50 kN. Fig. 3. shows values of Young’s moduli
Ei, Poisson’s ratios vi, thicknesses hi of continuum (C) and load parameters. Data used
here is the same as in [9], [11], [12].

Fig. 2. Assumed scheme of a layered flexible pavement structure.

The considered load is a certain simplification of the vehicle tyre impact on pa-
vement. Even such a simple model of this impact as an uniformly distributed load of
intensity p (which is approximately equal to tyre inflation pressure) over a circular area
C with radius r is commonly used in research and computing programs (see [1], [3],
[4], [5], [7]).
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Fig. 3. Geometrical, material and load parameters assumed of the mechanistic pavement model.

Additionally an auxiliary homogeneous, isotropic, viscoelastic half-space (H) and
loaded in the same way as the layered half-space (C) is used, with Young’s modulus
E and Poisson’s ratio v equals

(2.2) E = E6 = 100MPa, ν = ν6 = 0, 35.

A finite element rotationally symmetrical calculating model RS was built by assu-
ming D to be a cylindrical domain W of l × h size (l – diameter, h – height), whose
axis is perpendicular to surface S of either (C) or (H) domain respectively, and goes
through centre C of the circular loading area C . When rotationally symmetrical boun-
dary conditions on boundary surface ∂W are assumed, it is sufficient for finite element
modelling to assume a rectangle R that is an intersection of W and the half-plane
formed by the axis and a Cartesian x-axis along which (conventionally) the vehicle
wheel moves (Fig. 4.).

Finite elements of R are as follows (Fig. 5.): rectangular elements whose sides are
parallel to R ’s sides, 8-noded (with nodes in vertices and at the centre of each edge),
with quadratic shape functions of every parametric variable. Horizontal edges of the
elements are laid on borders of the layers or parallel to the upper edge and are about
2 cm high at a close distance to the loading area C (also in half-space (C) layers) and
grow proportionally towards the bottom edge, up to about 10 cm in height at 5 metres
below the upper edge. The elements are about 2 cm in width just under the loading
area and similarly grow proportionally the further they are from the axis, up to about
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10 cm in width at 3,5 meters away from it. Accurate Gaussian method is used for
integration within elements. Degrees of freedom are the displacement components wx
and wz at nodes along the axes of R plane.

Fig. 4. Rectangular domain R of the rotationally symmetrical computational model RS

The finite element of three dimensional (3D) computational model was built by
assuming D to be a cuboid-shaped domain V of l × b × h size (l – length, b – width,
h – height), that has a centrally positioned circular loading area C on the upper base.
The origin of the Cartesian coordinate system (x, y, z) for V falls in the centre C of
circle C . The x-axis goes along the symmetry axis of the cuboid’s upper base F0 (along
the vehicle’s movement direction), and the z-axis goes downwards into the pavement.
Assuming that the boundary conditions on the boundary surface ∂V are bisymmetrical,
all that is needed for finite element modelling is a U domain which is formed by one
quadrant of the xy plane and the z-axis (Fig. 6.).

Finite elements of U are as follows (Fig. 7.): prism-shaped elements with quadrate
bases which are contained in planes parallel to surface S (also on borders of the layers),
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20-noded (with nodes in vertices and at the centre of each edge) with quadratic shape
functions of every variable.

Horizontal edges of the elements are laid on borders of the layers or parallel to
the upper surface and are about 2 cm high at a close distance to the loading area C
(also in half-space (C) layers) and grow proportionally towards the bottom surface, up
to about 10 cm in height at 5 metres below the upper surface. The elements are about
2 cm in width just under the loading area and similarly grow proportionally the further
they are from the symmetry plane, up to about 10 cm in width at 3,5 meters away
from it. Accurate Gaussian method or reduction is used for integration within elements.
Degrees of freedom are the displacement components wx , wy and wz at nodes along
the axes of V plane.

There are two kinds of boundary conditions on boundary surfaces Fh and B of
domain D used (Fig. 8.):
• BC-1 – fixed in the perpendicular direction to the side surface B and to the bottom

base Fh (and freedom in the tangent directions on both surfaces)
• BC-2 – fixed in the perpendicular direction to the side surface B and Winkler-type

elastic support in the direction perpendicular to the bottom base Fh (and freedom
in the tangent directions on both surfaces), with a rigidity ratio (for both the mul-
tilayered half-space (C) and homogeneous one (H) – see Fig. 3.))

(2.3) kz =
E′

h′
, E′ =

(1 − ν6)E6

(1 + ν6)(1 − 2ν6)
,

where E′ is a modified Young’s modulus (for one-dimensional sub-grade layer
deformation), and h′ is a sub-grade thickness that is replaced by the Winkler-type
support.

ABAQUS/Standard program was used for calculations; for RS using a PC and using
a multi-processor cluster for the 3D model. Values of stresses, strains and displace-
ments components were calculated. Due to its importance in pavement structure, wz
displacement was calculated particularly (especially deflection of the upper surface S)
as well as strains εxx (especially at the bottom of the asphalt layers) and εzz (especially
at the upper surface of the sub-grade) and strain σxx (especially on the upper surface
S). Also the variations of these quantities along the thickness of analysed continuums
(C) (pavements (P)) under the centre C of the loading area are essential. These are
presented as a function of variable z where x = 0, y = 0.

This paper focuses mainly on how the domain D size influence the accuracy of
the calculations for the analysed values, in relation to those values obtained using
referential models RM (i.e. for half-spaces (C) and (H)) and the VEROAD program,
and for the homogeneous half-space (H) also in relation to precise results [17]. All
other parameters for the problem were assumed as stated above (they were verified in
works [11] and [12]).
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Fig. 5. Exemplary mesh for a rotationally-symmetrical model RS.

Fig. 6. Cuboid-shaped domain V for the finite element model 3D.
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Fig. 7. An exemplary mesh in the domain U.

Fig. 8. Types of boundary conditions assumed on domain D boundaries.
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3. D   FEM 

While section 2 focused on describing the process of building finite element models of
analysed pavement (P) based on referential model RM (which is a layered half-space
(C)) and on building auxiliary finite element models of the homogeneous half-space
(H), in this section the key element of the paper is presented. That element is to assign
the size l × h of the domain W of the RS model, and the size l × b × h of the domain
V of the 3D model – in such a way that it makes the solution to the problem of static
deformation of mentioned media obtained using the proposed FE models match the
results obtained by using VEROAD program (based directly on the equations for (C)
medium). Also, in case of the half-space (H) the results received using FE model should
match the precise solution based on the starting model, known in the elastostatics [17],
it means the values of displacements, stresses and strains:
– under the centre C of loading circle C , i.e. along the z-axis where x = y = 0

(3.1)

wz =
pr
2G

 2(1 − ν)r
(
r2 + z2)1/2 + (1 − 2ν)

 z2

r
(
r2 + z2)1/2 −

z
r


 ,

εxx = − p
4G

1 − 2ν − 2 (1 − ν) z
(
r2 + z2)1/2 +

z3

(
r2 + z2)3/2

 ,

εzz = − p
2G

1 − 2ν +
2νz

(
r2 + z2)1/2 +

z3

(
r2 + z2)3/2

 ,

σxx = − p
2

1 + 2ν − 2(1 + ν)z
(
r2 + z2)1/2 +

z3

(
r2 + z2)3/2

 ,

σzz = −p
1 − z3

(
r2 + z2)3/2

 ,

– on the surface S along the x-axis where z = 0, y = 0

wx =
(1 − 2ν) pr

4G
x
r
, x ∈ [0, r], wx =

(1 − 2ν) pr
4G

r
x
, x ∈ [r,∞),

wz =
2 (1 − ν) pr

πG

π/2∫

0

√
1 − x2

r2 sin2 ζdζ, x ∈ [0, r],

wz =
(1 − νz) pr

πG
r
x

1∫

0

√
1 − ζ

ζ(x2/r2 − ζ)dζ, x ∈ [r,∞),
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(3.2) εxx = εyy = − (1 − 2ν) p
4G

, x ∈ [0, r),

εxx = −εyy =
(1 − 2ν) p

4G

( r
x

)2
, x ∈ (r,∞),

εzz = − (1 − 2ν) p
4G

, x ∈ [0, r); εzz = 0, x ∈ (r,∞),

σxx = σyy = −1
2

(1 + 2ν) p, x ∈ [0, r);

σxx = −σyy =
1
2

(1 − 2ν) p
( r
x

)2
, x ∈ (r,∞)

σzz = −p, x ∈ [0, r); σzz = 0, x ∈ (r,∞),

where G = E/[2(1+v)] is shear modulus.
Especially, maximal surface S deflection in the centre C of the loading area C

(where x = y = 0) equals

(3.3) w =
(1 − ν)pr

G
=

2(1 − ν2)pr
E

.

Table 1 shows the key values of selected quantities of the RS model of analysed
half-space (H) with BC-1 boundary conditions and by Eq. (3.1).

Table 1
Comparison of maximal values calculated for selected quantities on surface S of the RS model of

half-space (H) for different domain W sizes with boundary conditions BC-1 and by Eq. 3.1.

No
Domain W size

(l × h) [m]
wz

[mm]
σxx

[MPa]
εxx

[10−6]
σzz

[MPa]
εzz

[10−6]
1. 6×4 1,726 -0,5520 -1312,6 -0,6501 -2637,4

2. 6×8 1,770 -0,5520 -1312,7 -0,6501 -2637,3

3. 6×12 1,814 -0,5520 -1312,7 -0,6501 -2637,1

4. 7×4 1,729 -0,5521 -1313,4 -0,6502 -2636,5

5. 7×8 1,762 -0,5522 -1313,6 -0,6502 -2636,3

6. 7×12 1,794 -0,5522 -1313,6 -0,6501 -2636,1

7. 8×4 1,732 -0,5522 -1313,9 -0,6502 -2636,0

8. 8×8 1,758 -0,5523 -1314,2 -0,6502 -2635,7

9. 8×12 1,782 -0,5523 -1314,2 -0,6501 -2635,5

10. Eq. (3.1) 1,785 -0,5525 -1316,3 -0,6500 -2632,5

Tables 2-4 show maximal values of the key quantities calculated on the basis of
the RS and 3D models of analysed pavement (P) (layered half-space (C)) for different
domain W and V sizes with boundary conditions BC-1 and BC-2 and on the basis of
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the RM model (obtained using VEROAD program) – under the centre C of the loading
area (where x = y = 0).

Results presented in Tables 1-4 lead to a conclusion that maximal values of stresses
and strains stabilize as the domain W size grows, and that for pavement (P) it is
enough for these sizes to be l =7m, h =5m. For every greater size these values remain
practically unchanged. Very similar values of analysed quantities and their stabilization
were obtained with BC-2 boundary conditions for the 3D model of analysed medium
(C) (as the model of pavement (P)).

Table 2
Maximum values of the key quantities calculated on the basis of the RS model of pavement (P) under

the centre of the loading area for different domain W sizes with boundary conditions BC-1 based on the
RM model of this pavement.

No
Domain W size

(l × h) [m]
w1)

z
[mm]

σ1)
xx

[MPa]
ε2)

xx
[10−6]

ε3)
zz

[10−6]
1. 6×7 0,221 -1,180 62,29 -162,87

2. 6×9 0,243 -1,180 62,29 -162,87

3. 6×11 0,265 -1,180 62,29 -162,87

4. 7×4 0,190 -1,183 62,40 -163,69

5. 7×5 0,198 -1,184 62,41 -163,63

6. 7×6 0,206 -1,184 62,41 -163,62

7. 7×7 0,214 -1,184 62,41 -163,62

8. 7×9 0,230 -1,184 62,41 -163,62

9. 7×11 0,246 -1,184 62,41 -163,62

10. 7×21 0,327 -1,185 62,52 -163,59

11. 8×6 0,205 -1,186 62,46 -163,99

12. 8×8 0,217 -1,186 62,46 -163,98

13. 8×11 0,236 -1,186 62,46 -163,98

14. 9×12 0,235 -1,187 62,49 -164,18

15. 16×16 0,229 -1,190 62,49 -164,48

16. 20×20 0,232 -1,190 62,48 -164,49

17. 25×25 0,234 -1,190 62,47 -164,50

18. 30×30 0,235 -1,190 62,46 -164,50

19. RM model 0,241 -1,175 62,42 -164,49
1)upper surface; 2)bottom surface of asphalt layers; 3)upper surface of subsoil
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Table 3
Maximum values of the key quantities calculated on the basis of the RS model of pavement (P) under
the centre of the loading area for different domain W sizes with boundary conditions BC-2 and based

on the RM model of this pavement.

Lp.
Domain W size

(l × h) [m]
h’ 4)

[m]
w1)

z
[mm]

σ1)
xx

[MPa]
ε2)

xx
[10−6]

ε3)
zz

[10−6]
1. 7×5 1 0,206 -1,184 62,41 -163,61

2. 7×5 5 0,238 -1,184 62,41 -163,59

3. 7×5 9 0,271 -1,184 62,41 -163,58

4. 8×6 5 0,236 -1,186 62,46 -163,97

5. Model RM - 0,241 -1,175 62,42 -164,49
1)upper surface; 2)bottom surface of asphalt layers; 3)upper surface of subsoil;
4)substitute thickness of the subgrade in Winkler’s model (by Eq. 2.1)

Table 4
Maximum values of the key quantities calculated on the basis of RS and 3D models of pavement (P)
under the centre of the loading area for different boundary conditions and constant domain V sizes:

l =7m, b =7m, h =5m (3D model) and domain W sizes: l =7m, h =5m (RS model).

Lp.
Boundary conditions

/ model
w1)

z
[mm]

σ1)
xx

[MPa]
ε2)

xx
[10−6]

ε3)
zz

[10−6]
1. BC-1/3D 0,196 -1,186 62,49 -163,91

2. BC-1/RS 0,198 -1,184 62,41 -163,63

3. BC-2/3D 0,231 -1,186 62,50 -163,83

4. BC-2/RS 0,238 -1,184 62,41 -163,59

5. Model RM 0,241 -1,175 62,42 -164,49
1)upper surface; 2)bottom surface of asphalt layers; 3)upper surface of subsoil; BC-2, where h′ =5m

Tables 2-3 also show that for a given l, a height h can be chosen with BC-1
boundary conditions, and for given l, h a h’ value (of the additional layer of subsoil
with BC-2 boundary conditions), in such a way that maximal deflections on surface
S of pavement (P) obtained from the RS model match these obtained from the RM
model (see Table 5 and Fig. 13.).

It was established, that diagrams of maximal pavement deflections (from the RS
model with BC-1 boundary conditions) vs. height h of domain W for consecutive
lengths of the l diameter of this domain are linear (see Fig. 13.).

Analogical diagrams based on the Table 1 data, in respect of maximal deflec-
tions of upper surface S of the homogeneous half-space (H), obtained from the
rotationally-symmetrical finite element model of this medium (Fig. 14.), are also linear.

It was found, that in the case of a continuous, viscoelastic, homogeneous and
isotropic layer (L) of finite height h, which is supported at the bottom (boundary
surface Sh) as in BC-1 and uniformly and statically loaded on the upper boundary
surface S = S0 with a load of intensity p, the solution of the static (one dimensional)
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Fig. 9. Deflection wz diagram along the x-axis (of the upper surface) obtained from the RS model
(domain W sizes l =7m, h =5m) with boundary conditions BC-2 for h’=5m (by Eq. (2.1)) and from the

RM model.

Fig. 10. Stress σxx diagram along the x-axis (of the upper surface) obtained from the RS model (domain
W sizes l =7m, h =5m) with boundary conditions BC-1 and from the RM model.
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Fig. 11. Strain εxx diagram along the x-axis at the bottom surface of the asphalt layers, obtained from
the RS model (domain W sizes l =7m, h =5m) with boundary conditions BC-1 and from the RM model.

Fig. 12. Strain εxx diagram along the x-axis at the upper surface of the subsoil, obtained from the RS
model (domain W sizes l =7m, h =5m, boundary conditions BC-1) and from the RM model.
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Table 5
Maximum values of wz deflections (in [mm]) according to the RS model with different domain W sizes

and with boundary conditions BC-1.
PPPPPPPl[m]

h[m]
6 7 8 9 10 11 12 13 14

6 0,210 0,221 0,232 0,243 0,254 0,265 0,276 0,287 0,298

7 0,206 0,214 0,222 0,230 0,238 0,246 0,254 0,263 0,271

8 0,205 0,211 0,217 0,223 0,229 0,236 0,242 0,248 0,254

9 0,205 0,210 0,215 0,220 0,225 0,230 0,235 0,240 0,244

10 0,206 0,210 0,214 0,218 0,222 0,226 0,230 0,234 0,238

12 0,208 0,211 0,214 0,217 0,220 0,222 0,225 0,228 0,231

Fig. 13. Maximum wz deflections of pavement (P) vs. height h of the domain W (from the RS model)
diagrams for different width l [m] of this domain.

deformation problem is a set of functions of variable z only, which equal [18]:

(3.4) wz =
ph
E′

(
1 − z

h

)
, εzz = − p

E′
, σzz = −p, σxx = σyy = − ν

1 − ν p, z ∈ [0, h]

(remaining displacements, stresses and strains components equal zero), where E’ is a
modified Young’s modulus (see Eq.(2.3)2):

(3.5) E′ =
(1 − ν)E

(1 + ν)(1 − 2ν)
.

With z = 0 the displacement of the upper surface S0 equals:

(3.6) w =
ph
E′
.
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Fig. 14. Maximal wz deflections of continuum (H) vs. height h of domain W (from the RS model)
diagrams for different width l [m] of this domain.

In the case of structure of many such layers (L) we also obtain a precise solution of
the problem of continuum (L) static deformation in a form of a piecewise linear function
of wz displacements and formulae for remaining quantities identical to Eqs. (3.4). An
example of such situation is a pavement (P) model in the form of layers set (C) where
the last layer models a subsoil with a finite height h6. The upper surface displacement
is described by formulae (see Eq. (3.6)):

(3.7) w =
ph
E′
,

h
E′

=

n∑

i=1

hi

E′i
, h =

n∑

i=1

hi, E′i =
(1 − ν)Ei

(1 + νi)(1 − 2νi)
(i = 1, . . . , n; n = 6).

We obtain identical solutions in the case of both one layer and a set of layers as
described above, but in the domain D (of arbitrary cross section F ) with boundary
conditions BC-1 (including a cylindrical domain W and a cuboid shaped domain V –
as in RS and 3D models of pavement (P)) and loaded uniformly on the entire upper
surface F0 with a load of intensity p.

Demanding that the displacement (3.6) of the upper surface F0 of the domain W of
layer (L) was the same as the maximal deflection (3.3) of the homogeneous half-space
(H), when intensity of the load distributed over a circle area of radius r = l/2 (l –
diameter of surface F0) is constant, i.e.:

(3.8) w =
(1 + ν)(1 − 2ν)ph

(1 − ν)E =
(1 − ν2)pl

E
,

it can be concluded that the height h of the domain W (regardless the value of p) is
a linear function of diameter l of the cross-section of this domain.
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With this premise and the results in Table 1 and Fig. 14 for deflections calculated
on the basis of a FE model RS of half-space (H) with boundary conditions BC-1,
it was verified that the height hd of domain W , which needs to be assumed to get
the precise solution (3.3) for displacement wz, is linearly dependent on given values
diameter l of the cross-section F of domain W (Fig. 15 and Table 6):

(3.9) hd = c(H)l.

Fig. 15. Relationship between values of the height hd and diameter l of the cross-section F of domain
W of homogeneous half-space (H).

Table 6
Factor of proportionality c(H) values for relation hd = c(H)l that leads to finding the size of the domain

W for which values of wz maximal displacements of half-space (H) are almost precise (from RS model
with boundary conditions BC-1).

No.
Width of domain W

l [m]
Height of domain W

hd [m] by Fig. 15
Factor c(H):
hd = c(H)l

1. 6,0 9,3536 1,5589

2. 7,0 10,9161 1,5594

3. 8,0 12,4593 1,5574

Average 1,5586

It was also noted, that pairs of value measurements (l, h) on Fig. 13. lines, for
which the maximal deflection wz from the RS model of pavement (P) with BC-1
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Fig. 16. Relationship between height hd and diameter l of cross-section F of the domain W of the
layered half-space (C).

boundary conditions equals the maximal deflection from the RM model (from VERO-
AD program), i.e. wz =0,2414 mm, form a straight line as shown on Fig. 16., which
illustrates a linear dependence:

(3.10) hd = c(P)l,

where hd is such a height of the domain W with given l which also allows for finding
sufficiently precise values of wz displacement from the RS model. It should be noted
that l should be high enough to ensure sufficient compatibility of values of important
component, stresses and strains obtained from the RS model and from the RM model.
Factor of proportionality c(P) is shown in Table 7.

In one dimensional deformation of the domain D of pavement (P) (of the multi-
layered half-space (C), of the homogeneous half-space (H)) with boundary conditions
BC-1, that is:

(3.11) wz = wz(z), wx ≡ 0,wy ≡ 0, wz(h) = 0,

the displacement of the upper base F0 of the domain D equals (by known structural
mechanics formulae):

(3.12) w = wz(0) =
Ph
E′F

,

where P is a resultant of the vertical load applied over the area C (any) with a centre
C positioned in a geometric centre of base F0 (P is the resultant pressure of a vehicle’s
tyre), where F is the area of this base (of the domain D cross-section F ) and E’ is
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Table 7
Factor of proportionality values in dependence hd = c(P)l which allows for finding the sizes of the

domain W which lead to almost precise values of wz displacements from the RS model of pavement (P)
with boundary conditions BC-1.

No
Width of domain W

l [m]
Height of domain W
hd [m] by Fig. 13.

Factor c(P):
hd = c(P)l

1. 6,0 8,8819 1,4803

2. 7,0 10,3905 1,4844

3. 8,0 11,8899 1,4862

4. 9,0 13,3868 1,4874

5. 10,0 14,8809 1,4881

6. 12,0 17,8239 1,4853

Avarage 1,4853

expressed in Eqs. (3.7) (is an effective lengthwise stiffness of material contained in the
domain D). Consequently, it was verified that if the area F of the cross-section of the
domain V is equal to the area of the cross section of the domain W (where diameter
lr is wide enough, for example 7 m, see Table 2), i.e.

(3.13) F = πl2r /4,

then, obtained from dependence (3.10), the value hd = c(P) lr of the domain V ’s height
ensures the possibility of finding practically precise values of wz in the RM model
by using the 3D model, if values of l, b and hd are big enough for key stresses and
strains obtained from the 3D model to be equal to these quantities obtained from the
RM model. This is validated by exemplary results shown in Table 8.

Table 8
Comparison of maximum deflection values calculated for the domain V on the 3D model of pavement

(P) – for different F = l × b and h = hd found by using dependences (3.10) and (3.13) – with exact value
in the RM model (0,2414 [mm]).

No l[m] b[m] F[m2] lr[m] hd [m] wz [mm] error[%]

1. 7 5 35 6,6756 9,9152 0,2439 1,0

2. 7 7 49 7,8987 11,7318 0,2418 0,2

3. 7 10 70 9,4407 14,0222 0,2429 0,6

4. 7 14 98 11,1704 16,5913 0,2429 0,6

! Size b =5 serves for comparison purposes only. In real calculation b of at least 7 m is required.

Height of hd domain D (D= W or D= V ), found by applying formulae (3.10),
(3.13) in a way presented above, can be reduced to hz value by using Winkler-type
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boundary conditions (BC-2) on the bottom base with a rigidity modulus calculated by
Eqs. (2.3), where

(3.14) h′ = hd − hz.

It is also possible to still use boundary conditions BC-1 after reduction of domain W
height. In that case a constant value (see Table 7)

(3.15) w′ =
Ph′

E′F
,

needs to be added to the displacement wz values, where P = 50kN – half the axle
load, h′ – reduced height value, F – area of the base of domain D, E′ – a modified
Young’s modulus of the subgrade by Eq. (2.3)2, because if hz is high enough, then
there already is a uniform vertical displacement field underneath, in the domain D.

Assuming the h = hz and boundary conditions BC-1 (without (3.15) correction)
has no effect on the stress and displacement values calculated from the RS and 3D
models when compared with results obtained using boundary conditions BC-2 where
h = hz (or BC-1 boundary conditions where h = hd), Table 9.

Table 9
Comparison of maximum deflections calculated for the domain V (3D model)

with base size 7×7 [m] with different methods.

7×7×11,732 [m]
BC-1

7×7×5 [m] BC-2
where h’ = 6,732 [m]

7×7×5 [m] BC-1
with correction by

Eq. (3.15)
RM model

0,2421 [mm] 0,2418 [mm] 0,2417 [mm] 0,2414 [mm]

4. S  

The presented method of selecting a bounded subdomain D out of a material half-space
layered continuum (C) constructed of finite number of elastic, homogeneous and iso-
tropic layers of constant thickness and a layer infinitely thick, which is in a steady
deformation state caused by a load perpendicular to the surface S of medium (C) and
distributed uniformly over a circular area C , ie. a sub-medium of (C) which is assumed
as a model of flexible pavement (P) loaded by a vehicle tyre, is correct for BC-1
boundary conditions. The c(P) ratio in the key linear dependence (3.10) hd = c(P)lr lr
(lr – diameter of a referential cylindrical domain Wr of height hd) is appropriate for
selected set of layers (and their physical and geometric properties – see Fig. 2). In
order to find that ratio it is sufficient to know the exact deflection under the centre of
loading area C of the layered half-space (C) (or, to know the real maximum surface
deflection of pavement (P) which is respectively modelled by that half-space) and the
values of deflection from the RS model defined by cylindrical domain W with two
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values of its height h for a given diameter l of this domain, with boundary conditions
BC-1 and with a given load (see Fig. 13. and 16.).

Determining of dependence hd = c(P)lr , ie. the coefficient c(P) is also possible
without knowing the precise value of deflection of the centre C of loading area C of
layered half-space (C), i.e. only on the basis of straight graphs showing the dependence
of maximal deflection wz on height h of domain W with various widths l (see Fig. 13.).
For this aim one should select such value of wz (it will be the sought exact value
of maximal deflection of medium (C)), that the points of intersection straight line
wz = const with straight graphs of dependence of maximal deflections on heights
of domain W were lied on one straight line passing by coordinates (h, l) origin
(Fig. 15.).

There is a possibility of reducing the hd height of the domain D to hz which is
calculated with Eq. (3.14), (3.10) and (2.3), with boundary conditions switched from
BC-1 to BC-2 (a Winkler-type elastic support on the bottom base of domain D – see
Fig. 8.) or with BC-1 and wz displacement values corrected by Eq. (3.15).

Of course the horizontal size and height of the domain D (which is modelled with
finite elements) have to be big enough for FE model key values of strains and stresses
to be sufficiently precise (stabilized with growth of D sizes; see Table 2).

The method described above can be used for selecting a cylindrical domain
D = W , which is obvious, and for a cuboid-shaped domain D = V , which was
verified for a system of layers considered here (see Fig. 2.).

Moreover, taking into account:
a) cited solutions for the problem of one-dimensional static deformation of the conti-

nuum (C) occupied by domain D with a cross section F , that is loaded vertically
on the upper base F0 with forces of a resultant P in the centre of area F0 with
boundary conditions BC-1,

b) identical solutions for the problems of one-dimensional static deformation of the
above solid loaded on the upper base with a load of intensity p and of one-dimensio-
nal deformation of a set of infinite layers of identical transverse structure, loaded
uniformly and vertically on the upper base with a load of intensity also p,

c) the existence of a domain of the medium (C) loaded statically in a direction per-
pendicular to the boundary surface on a bounded surface of this space, outside
which the strain and stress states do not differ considerably if loads implicating
them are equivalent and component values of strains and stresses disappear at a
large distance from the loading area (Saint-Venant’s principle),

it can be concluded that the described method of selecting domain D of continuum
(C) (of pavement (P)) can be used for:
1. a cylindrical domain with an arbitrary (rational) cross-section F whose area is

substituted for F in Eq. (3.13) to find the diameter lr of the referential cylinder
Wr with a circle-shaped cross-section and next to find height hd = c(P)lr of this
cylinder (equal to domain W height), as long as we assume boundary conditions
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BC-1 on a side and bottom surfaces, with a possibility to reduce this height by
Eq.(2.3) with BC-2 boundary conditions.

2. an arbitrary (not only circular) loading area C and arbitrarily distributed vertical
load of a resultant P in the geometric centre of the upper base F0 of the domain D,

3. a transversely non-homogeneous half-space (in function of variable z) arbitrarily to
a certain depth (for example in layered half-space), sufficiently above the bottom
base F0 of already homogeneous domain D below a certain level.
Apart from a presented FE modelling of flexible pavements application, as exem-

plified in this paper, this method can also be used in geotechnical engineering, for
example for subsoil modelling (after satisfying conditions for initial assumptions).

R

1. D.M. B, General theory of stress and displacements in layered soil systems, Appl. Physics
1945.

2. Regulation of the Minister of Transport and Maritime Economy of 2 March 1999 on the technical
conditions to be met by public roads and their location [In Polish] (Dz. U. of 14 Mai 1999).

3. S. F, Mechanics of road pavement, Petit s.c., Lublin 2007.
4. BISAR 3.0, Shell Bitumen, 1998. Shell International Oil Products BV.
5. P.C. H, The Visco-Elastic Multilayer Program VEROAD, Heron, 41, 1, 1996.
6. K. S, L. S, Y. H, R. M, Analysis of shear stress in asphalt pavements under actual

measured tyre-pavement contact pressure, 6th ICPT, Sapporo, Japan, 2008.
7. M. K, Three-dimensional finite element analysis of flexible pavements considering nonlinear pave-

ment foundation behavior, PhD diss., University of Illinois, Urbana 2007.
8. ABAQUS/Standard User’s Manual. Hibbitt, Karlsson & Sorensen, Inc., version 6.6, USA, 2006.
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12. M. Ń, Influence of boundary conditions on static deformation, effort and durability of flexible
pavements. Using FEM and ABAQUS program [in Polish]. MScEng dissertation. Faculty of Civil
Engineering, Warsaw University of Technology, Warsaw 2012.

13. Y.R. K, Modeling of Asphalt Concrete, ASCE Press – McGrow-Hill, New York 2009.
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