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RELIABILITY MODELING IN SOME ELASTIC STABILITY PROBLEMS VIA
THE GENERALIZED STOCHASTIC FINITE ELEMENT METHOD

M. KAMIŃSKI1, P. ŚWITA2

The main idea of this work is to demonstrate an application of the generalized perturbation-based
Stochastic Finite Element Method for a determination of the reliability indicators concerning elastic
stability for a certain spectrum of the civil engineering structures. The reliability indicator is pro-
vided after the Eurocode according to the First Order Reliability Method, and computed using the
higher order Taylor expansions with random coefficients. Computational implementation provided
by the hybrid usage of the FEM system ROBOT and the computer algebra system MAPLE enables
for reliability analysis of the critical forces in the most popular civil engineering structures like sim-
ple Euler beam, 2 and 3D single and multi-span steel frames, as well as polyethylene underground
cylindrical shell. A contrast of the perturbation-based numerical approach with the Monte-Carlo
simulation technique for the entire variability of the input random dispersion included into the
Euler problem demonstrates the probabilistic efficiency of the perturbation method proposed.

Key words: stability analysis; perturbation method; Stochastic Finite Element Method; Response Function
Method; reliability indicator; elastic buckling.

1. I

As it is widely known, the computational stability analysis is especially important in
the area of the steel and/or aluminium structures, where the structural elements are
usually very slender. Therefore, the critical load magnitude and the additional limit
state must be evaluated to optimally design the structure with the given geometry and
spatial distribution of the components. This optimization problem has to be solved with
the use of verification of reliability indicator according to the general rules provided
by Eurocode appendices [1]; this indicator consists of the expected values and standard
deviations of the admissible (now critical) and maximum load values, which need to
be pre-calculated first. Because the Eurocode gives no direct general algorithm of how
to calculate this indicator and the component probabilistic moments, this elaboration
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contains a relatively brief description of how to proceed in this case and what can be
expected in these structures (both steel and composite). Of course, there are plenty
available well-established methods of the first, second, as well as higher order methods
leading to a determination of the reliability indices or, directly, the probability of failure.
They depend strongly on the shape of the boundary between safe and unsafe regions
in the additional parametric space [2]. We strictly follow the First Order Reliability
Method to discover and discuss the consequences of an application of the regulations
of Eurocode in engineering practice assuming that the designers have an access to the
probabilistic algorithms and computer programs.

We employ two alternative probabilistic methodologies available for stability analy-
sis [3,4] – namely Monte-Carlo simulation, and the generalized stochastic perturbation
– to determine reliability indicators for the Euler problem, 2 and 3D models of the same
single span steel frame, for 2D model of the multi-span and multi-storey steel frame,
as well as for the underground cylindrical composite shell structure. An application of
the generalized version of the stochastic perturbation technique follows the fact that the
second order second moment (SOSM) implementation of this method was restricted
to the input coefficients of variation smaller than α=0.15 [5]. The response function
method implemented into the computer algebra system MAPLE [17] is employed to
calculate partial derivatives of the critical and maximum compressive forces with re-
spect to two separate input random variables – Young modulus and cross-sectional
axis inertia moment. The structural analyses using the Finite Element Method are
carried out for both stability and static problems thanks to the commercial engineering
package ROBOT [18] and the response functions are computed via several solutions
with slightly modified input parameters, which are to be treated as random quantities.
We calculate twice the reliability indicators for those structures as the function of input
coefficient of variation α and compare with the admissible values of indicator β taken
directly from Eurocode. This is done to find an interrelation β = β(α) and, further-
more, to determine the maximum input random dispersion of those two input random
parameters equivalent to the specific reliability class according to Eurocode demands.
The most common result is that the higher input random dispersion, the smaller overall
reliability indicator, and this result is compliant rather perfectly with the engineering
intuition in this matter. The stochastic perturbation-based method proposed in this paper
is characterized by essentially smaller computational time cost in comparison to the
Monte-Carlo simulation, comparable rather to the multiple deterministic solutions, and
having almost the same efficiency as the additional simulation-based estimators for the
reliability indicators. Once T denotes the time of deterministic FEM problem solution,
the simulation-based analysis is closer to 104 × T , while the methodology proposed
results in not more than 15×T excluding common deterministic FEM discretization
effort. The model presented in the paper is rather an introductory step into the full
probabilistic stability analysis of the steel thin-walled profiles – the next step would
consist in evaluation of the critical moments under the combined bending-torsional
load, and final comparison with the maximum moments calculated for the structural
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members. We need to emphasize that while the randomization of the Young modulus
strictly follows the experimental statistics, the uncertainty in element thickness or inertia
moments may simulate the effect of their corrosion, however further calibration with
corrosion statistics may be needed to provide time correlation of the results computed
here.

2. T G S F E M

Let us introduce the random variable b ≡ b (ω) and its probability density function
as p(b), where ω (stating frequently for the random event in probability theory) de-
notes that their function belongs to the additional probability space. We use Gaussian
probability spaces for this purpose truncated to the physically admissible values, like
positive for the Young modulus etc. Then, the expected values, as well as their central
mth probabilistic moments are defined as [5,6]

(2.1) E [b] ≡ b0 =

+∞∫

−∞
b p (b) db,

and

(2.2) µm (b) =

+∞∫

−∞
(b − E[b])m p (b) db.

The basic idea of this stochastic perturbation approach is to expand all the input
variables and all the state functions of the considered problem via Taylor series about
the additional expected values using the parameter ε >0. In the case of random critical
force Pcr depending on some random input quantity b, the following expression is
employed [6]:

(2.3) Pcr = P0
cr +

∞∑

n=1

1
n!ε

n ∂
nPcr

∂bn (∆b)n,

where

(2.4) ε∆b = ε
(
b − b0

)

is the first variation of b around its expected value b0. We will derive the expected
value for the critical force Pcr in view of above expansion as

(2.5) E [Pcr] =

+∞∫

−∞
Pcr(b)p (b) db =

+∞∫

−∞

P0
cr +

∞∑

n=1

1
n!ε

n ∂
nPcr

∂bn ∆bn

p (b) db
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Let us remind that this power expansion is valid only if the state function is analytic
in ε, the series converge and, therefore, any criteria of convergence should include the
magnitude of the perturbation parameter; perturbation parameter is usually taken simply
as equal to 1 in engineering computations. Contrary to most of the previous analyses in
this area (see [5], for instance), now the quantity ε is treated as the expansion parameter
in further analysis, so that it is included explicitly in all further derivations demanding
analytical expressions.

From the numerical point of view, the expansion provided by formula (2.3) is
carried out for the summation over the finite number of components, whereas the
integral given in definition (2.5) is never calculated with infinite limits – usually it
has lower and upper bounds driven by physical meaning of the specific parameter, or
just the experimental works. Having Gaussian input in the form of b(ω) or another
symmetric probability distribution function, one can show that

(2.6) E [Pcr] = Pcr(b0) + 1
2ε

2
∂2Pcr

(
b0

)

∂b2 µ2

(
b0

)
+ 1

2m!ε
2m
∂2mPcr

(
b0

)

∂b2m µ2m

(
b0

)
+ ...

This expected value can be calculated analytically or symbolically computed only
if it is given as some analytical function of the random input parameter b. Com-
putational implementation of the symbolic calculus programs (with automatic partial
differentiation of even complex real functions), combined with powerful visualization
of probabilistic output moments, ensures the fastest solution of such problems. Further,
thanks to such a series representation of the random output, any desired efficiency of
the expected values, as well as higher probabilistic moments, can be achieved by an
appropriate choice of the expansion length and some additional correction available in
the parameter ε, which depends on the input probability density function (PDF) type,
interrelations between the probabilistic moments, acceptable error of the computations
etc. This choice can be made by the comparative studies with sufficiently long (almost
infinite) series of Monte-Carlo simulations or theoretical results obtained from the
direct symbolic integration. Similar considerations lead to the 6th order expressions
for a variance; there holds
(2.7)

Var (Pcr(b)) = ε2µ2 (b)


∂Pcr

(
b0

)

∂b


2

+ε4µ4 (b)


1
4


∂2Pcr

(
b0

)

∂b2


2

+
2
3!

∂Pcr

(
b0

)

∂b

∂3Pcr

(
b0

)

∂b3



+ε6µ6(b)


(
1
3!

)2 
∂3Pcr

(
b0

)

∂b3


2

+
1
4!

∂2Pcr

(
b0

)

∂b2

∂4Pcr

(
b0

)

∂b4 +
2
5!

∂Pcr

(
b0

)

∂b

∂5Pcr

(
b0

)

∂b5
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Let us mention that it is necessary to insert the relevant central probabilistic mo-
ments of the input random variable in each of those equations to get the algebraic
form convenient for symbolic computations. A recursive derivation of the particular
perturbation order equilibrium equations can be powerful in conjunction with symbolic
packages with automatic differentiation tools only; it can potentially extend the area
of stochastic perturbation technique applications in computational physics and engine-
ering outside the random processes with small dispersion about their expected values.
Hence, there is no need to implement directly exact formulas for the particular nth order
equations extracted from the perturbation – they can be symbolically generated in the
system MAPLE, as it is done here, and next converted to the FORTRAN source codes
of the additional computer software. Finally, it should be emphasized that the random
input variables must express here the uncertainty in space or in time, separately.

Having determined the first two probabilistic moments of the critical force one
may calculate the Cornell reliability indicator using the limit function g according to
the following formula:

(2.8) β =
E

[
g
]

σ (g)
=

E [R − E]
σ (R − E)

=
E [R] − E [E]√

Var (R − E)
=

E [R] − E [E]√
Var (R) + Var (E)

where R denotes the structural capacity, while E stands for the structural response.
Then, the failure probability P f is found from the relation

(2.9) P f = Φ (−β)
where Φ is a probability density function of the standardized Gaussian distribution. The
minimal values of this indicator are specific for the three reliability classes and given
in Eurocode with respect to two different time periods of the structure exploitation – at
the very beginning of this exploitation (after a year) and at the average designed time
of reliable exploitation (50 years) – see table 1. Computational analysis provided in
Section 4 shows a variability of the reliability indices for the popular structures contra-
sted with those specific limits. We look for the admissible input random dispersion of
the given random variables to keep the reliability indicator above the additional limit
and to fulfill the durability condition.

Table 1
Proposed minima values of the reliability indicator.

Proponowane wartości minimalne wskaźników niezawodności

Reliability class
Minimal values of β

1 year period 50 years period

RC3 5,2 (β1) 4,3 (β4)

RC2 4,7 (β2) 3,8 (β5)

RC1 4,2 (β3) 3,3 (β6)
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3. E    F E M

   

The Finite Element Method (FEM) discretization is described here in terms of the
Response Function Method (RFM) convenient for further solution to the structural
problem exhibiting uncertainty in some design parameter. According to the previous
work [6], we perform a sequence of the deterministic solutions, where the value of input
random parameter is treated as deterministically varying around its mean value – for
the brevity of presentation, the new index α is used here to expose this variability. This
symbol is introduced as the lower index in brackets in all FEM equations to underline
that no summation applies here with respect to this new index. The specific character
of the RFM approach is that the variability of all FEM matrices and vectors holds
true except to the shape functions and their derivatives. Let us consider the linear
elastic prismatic beam (E(α) – Young modulus, l(α) – length, A(α) – cross sectional
area, F(α) – axial force ) element with two nodes indexed by i and j at its ends. Then,
the deformation energy of the finite element idealizing elastic behavior of the simple
prismatic bar is introduced for 3D Cartesian system as [7,8]

(3.1) U (α) =
1
2
qT

1x6(α)
k(s)

6x6(α)
q6x1(α) +

1
2
qT

1x6(α)
k(σ)

6x6(α)
q6x1(α)

where q(α) is the displacement vector of the nodes

(3.2) q(α) =
{
u(i)

x(α), u
(i)
y(α), u

(i)
z(α), u

( j)
x(α), u

( j)
y(α), u

( j)
z(α)

}
,

k(s)
4x4(α) is the elemental elastic stiffness matrix introduced as

(3.3) k(s)
6x6(α) =

E(α)A(α)

l(α)



1 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0



and k(σ)
6x6(α) – the geometric stiffness matrix of this finite element

(3.4) k(σ)
6x6(α) =

F(α)

l(α)



0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 −1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 −1 0 0 1
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Stability analysis of the planar or spatial frames as well as plates or shells demands
the interchange of this matrix with the one convenient for the structural element being
modeled. So that, the potential energy for this finite element may be expressed as

(3.5) J (α)
P =

1
2
qT

(α)

(
k(s)

(α) + k(σ)
(α)

)
q(α) − RT

(α)q(α)

the minimization of which with respect to the generalized displacement vector leads
to

(3.6)
(
k(s)

(α) + k(σ)
(α)

)
q(α) = R(α)

All these series of elemental stiffness matrices, together with the corresponding
series of generalized displacement vectors, are then linked together into the correspon-
ding series of global matrices and vectors following traditional algorithm of the FEM.
The discrete stability equation rewritten for the entire system is

(3.7)
(
K(s)

(α) + λ(α)K(σ)
(α)

(
F̂(α)

))
r(α) = λ(α)R̂(α)

where K(σ)
(α)

(
F̂(α)

)
is the series of geometric stiffness matrices, K(s)

(α) is the series of the
elastic stiffness matrices, the given loading series R(α) has proportional character to
λ(α)R̂(α), where λ(α) is the loading factor series and R̂(α) is some loading. Further, the
distribution of internal forces F̂(α) is equivalent to the load R̂(α) and displacement r(α)

is equivalent to the load λ(α)R̂(α). We determine the values of λ(α) from the following
condition:

(3.8)



(
K(s)

(α) + λ(α)K(σ)
(α)

(
F̂(α)

))
r1(α) = λ(α)R̂(α)(

K(s)
(α) + λ(α)K(σ)

(α)

(
F̂(α)

))
r2(α) = λ(α)R̂(α)

, r1(α) , r2(α), r1(α) − r2(α) = v(α)

so that we obtain the basic algebraic equation series representing the elastic stability

(3.9)
(
K(s)

(α) + λ(α)K(σ)
(α)

(
F̂(α)

))
v(α) = 0

Therefore, the basic condition that one can get for the critical value λ(α) = λcr(α)

and for critical load Rcr(α) = λcr(α)R̂(α) is the following one:

(3.10) det
(
K(s)

(α) + λ(α)K(σ)
(α)

(
F̂(α)

))
= 0

The key issue of this approach is the polynomial representation of the critical value
λcr with respect to the input random variable b, which is proposed for all real values
indexed here by m as [9]

(3.11) λ(m)
cr = Dmkbk
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The coefficients Dmk are determined numerically from several deterministic solu-
tions to the original stability matrix equation with random parameter value varying
around its mean value in the interval b =

[
b0 − ∆b, b0 + ∆b

]
(Young modulus, for

instance) or, following some engineering aspects, over some finite set of the specific
discrete values (like inertia moments for the existing steel profiles). Then, the tech-
nique of nonlinear least square fitting is employed to find out the coefficients of the
response polynomium, which is realized here using symbolic analysis implemented
in the computer algebra system MAPLE. Finally, both in analytical way, the partial
derivatives of the response functions are derived by using the formula:

(3.12)
∂kλ(m)

cr

∂bk =

k∏

j=1

(n − j) Dm1bn−k +

k∏

j=2

(n − j) Dm2bn−(k+1) + ... + Dm n−k .

The Response Function Method in its global formulation is used here since the
critical force or pressure have both global character for the entire structure being
examined; more subtle local formulation is advised for the random fields of structural
response like displacements, temperatures or stresses. When one uses the following
expansion as it is proposed for most of the computational tests below

(3.13) λ(cr) =

9∑

k=0

Dkbk

then the expected values of the critical force derived symbolically for the 10th order
approach is represented by the following formula:
(3.14)

E
[
λ(cr)

]
= D0 + 4374 α8ε8 (3, 6288 D9b + 40320D8) +

+972α6ε6
(
60480D9b3 + 20160D8b2 + 5040D7b + 720D6

)
+

+162α4ε4
(
3024D9b5 + 1680D8b4 + 840D7b3 + 360D6b2 + 120D5b + 24D4

)
+

+18α2ε2
(
72D9b7 + 56D8b6 + 42D7b5 + 30D6b4 + 20D5b3 + 12D4b2 + 6D3b + 2D2

)

The variances, even according to the sixth order, have essentially more complex formula
(3.15)
µ2

(
λ(cr)

)
=

36α2ε2
(
9D9b8 + 8D8b7 + 7D7b6 + 6D6b5 + 5D5b4 + 4D4b3 + 3D3b2 + 2D2b + D1

)2

+
3888

4
α4ε4

(
72D9b7 + 56D8b6 + 42D7b5 + 30D6b4 + 20D5b3 + 12D4b2 + 6D3b + 2D2

)2

+
3888

3
α4ε4

(
9D9b8 + 8D8b7 + 7D7b6 + 6D6b5 + 5D5b4 + 4D4b3 + 3D3b2 + 2D2b + D1

)
×

×
(
504D9b6 + 336D8b5 + 210D7b4 + 120D6b3 + 60D5b2 + 24D4b + 6D3

)

+6, 998
α6ε6

36

(
504D9b6 + 336D8b5 + 210D7b4 + 120D6b3 + 60D5b2 + 24D4b + 6D3

)
+
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+6, 998
α6ε6

24

(
3024D9b5 + 1680D8b4 + 840D7b3 + 360D6b2 + 120D5b + 24D4

)
×

×
(
72D9b7 + 56D8b6 + 42D7b5 + 30D6b4 + 20D5b3 + 12D4b2 + 6D3b + 2D2

)
+

+6, 998
α6ε6

60

(
15120D9b4 + 6720D8b3 + 2520D7b2 + 720D6b + 120D5

)
×

×
(
9D9b8 + 8D8b7 + 7D7b6 + 6D6b5 + 5D5b4 + 4D4b3 + 3D3b2 + 2D2b + D1

)

Determination of probabilistic moments for the maximum load proceeds quite
similarly; we solve for the displacements vector set q(α) from the matrix equilibrium
equations:

(3.16) K(α)q(α) = Q(α)

where K(α) denotes traditional stiffness matrix of the system and where Q(α) is equ-
ivalent to the external loads vector. However now, the discrete response functions are
applied, which means that for each degree of freedom β = 1, ...,N we provide separately
a polynomial expansion of the following character:

(3.17) qβ = D̂βmbm

so that the coefficients D̂βm (for m=1,. . . ,M, M – total number of the RFM trial points)
are to be computed from node to node separately, which enlarges the computational
time consumption in the analysis. Finally, the strain and stress tensors components are
computed here using the following polynomial approximations:

(3.18) εi j = Bi jβqβ = Bi jβD̂βmbm

and

(3.19) σkl = Ckli jεi j = Ckli jBi jβqβ = Ckli jBi jβD̂βmbm

Basic probabilistic moments of the vector qβ and the tensors εi j, σkl may be
relatively easily derived by replacing in the expanded formulas (3.14-3.15) Dm with D̂βm
and by inserting the additional multipliers like Bi jβ and/or Ckli jBi jβ for all necessary
components.

4. C 

4.1. N    E 

The first numerical example is devoted to the comparison of the reliability indicator
determined by using the Monte-Carlo simulation [10] and, alternatively, via the ge-
neralized stochastic perturbation technique described above. The last approach uses
10th order expansion for a determination of the expected values and 6th order – for
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the variances calculation, while the Monte-Carlo simulation analysis has been pro-
vided by using crude sampling with the length of N=10000 samples in the program
MAPLE. The studied case is the linear elastic and statistically homogeneous beam with
the constant cross-section of HEB 300, the length of L=7,0 m with the randomized
Young modulus typical for the stainless steel S355. Its expected value is equal to
E[E]=210 GPa, whereas its standard deviation (showing the random dispersion) is the
additional input parameter of this study (given in all next figures as the coefficient of
variation). Such a large dispersion, α ∈ [0.0, 0.45] is enormously large for the structural
steels at the very beginning of the exploitation time, however it may happen for the
structures subjected to the extended corrosion processes, and that is why it still remains
interesting. The FEM model is built up with 1000 linear finite elements to be compared
against the well-known analytical solution available for the simulation approach. The
trial points coming from both numerical methods are marked with the diamonds (see
Fig. 1) and the polynomial approximations for those data sets are applied – it is apparent
that the functions obtained are continuous, smooth and convex everywhere, nonlinearly
decreasing to theoretical value 0 obtained for α → ∞. Nevertheless, it is seen that the
final reliability indicator is significantly sensitive to the variations of input coeffi-
cient of variations and even small change within α may result in the apparent change
of this indicator. It needs to be mentioned that the response function is determined
from

Fig. 1. Reliability indices for the Euler problem.
Rys. 1. Wskaźniki niezawodności w zadaniu Eulera



R         G. . . 285

the numerical experiments provided for E=E[E](1±0.4) and the equidistant set of trial
points within this interval; the same discretization is used in the next computational
experiments also.

Figure 1 shows the reliability indicator contrasted with 6 limit values mentioned
in Eurocode – upper curve demonstrates here the simulation-based results, while lower
one – those obtained from the stochastic perturbation analysis. It is apparent that prac-
tically they return the same results for the input coefficient of variation α ∈ [0.0, 0.2].
As one may expect, the higher input random dispersion (higher uncertainty of the given
design parameter), the smaller reliability indicator and, at the same time, the larger
probability of failure. The third observation is that the entire structure is above any
reliability limit until α = 0.15, which is relatively large value, because this parameter
is usually less than 0.10 for the stainless steels at the production stage; this result is
quite independent from the reliability class provided according to Eurocode [1]. It is
confirmed by those computations that the reliability condition is first violated for β
equivalent to the one year period and, after that, for 50 years period for all reliability
classes. One may relatively easy repeat those two techniques to randomize the other
analytical results available in the classical stability theories [11,12].

4.2. 2D  3D    -   

The main purpose of the second computational example was to make a comparison
between 2 (Fig. 2) and 3 dimensional models (Fig. 3) of the same steel frame structure

Fig. 2. 2D FEM model of the steel frame.
Rys. 2. Dwuwymiarowy model ramy stalowej
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made of S235 in the context of the resulting variability of reliability indicator. The
subject of this study is the magnitude of the critical loading introduced by the vertical
unit forces (given in kN) applied at two midpoint columns. The key issue here is the
influence of the model quality on the final values of the basic reliability indicators. Two
polynomial approximations have been numerically developed using the FEM system
ROBOT, as well as the computer algebra system MAPLE, v. 13, to finally determine
the reliability indicators varying together with the input coefficient of variation for 2D
model (Fig. 4), as well as for the 3D model (Fig. 5).

Fig. 3. 3D FEM model of the steel frame.
Rys. 3. Trójwymiarowy model ramy stalowej
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Fig. 4. Reliability indices for the 2D FEM model of the steel frame.
Rys. 4. Wskaźniki niezawodności dla dwuwymiarowego modelu ramy stalowej

Now we have chosen separately the Young modulus of the steel, as well as the
principal inertia moment of the columns as the input Gaussian random variables.
Comparison of Fig. 4 and 5 shows first that the indicators β start from the maximum
reached at the very beginning of the exploitation time (equivalent to α close to 0),
and tend to some minimal values at the end of the safe exploitation time (for the
increasing values of α). Further, they are significantly larger for randomized inertia
moment (upper curves) than for the Young modulus. Uncertainty of the last variable
leads to the safe exploitation for all reliability classes until α(E)60.15 (in 2D model)
and until α(E)60.13 (in 3D model). Somewhat inverse relation is noticed for J=J(ω)
– the unconditional safety holds true for α(J)60.2 (in planar mode) and for α(J)60.32
(spatial structure). Quite similarly to the previous case study we obtain quite smooth
and convex reliability curves. It is very interesting (see Fig. 4) that the final value of the
indicator β is the same in 2D model (about 2) for input coefficients of variation of both
input variables equal to about 0.46. Neglecting the reliability class of the structure, the
differences between α equivalent to β1 and β6 each time correspond to an increase of
this coefficient by about 0.10. This is the intermediate safety level measure for most
of the engineering structures designed safely according to the zeroth order methods.
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Fig. 5. Reliability indices for the 3D FEM model of the steel frame.
Rys. 5. Wskaźniki niezawodności dla trójwymiarowego modelu ramy stalowej

4.3. 2D    -   

The next series of numerical experiments deals with the probabilistic stability analysis
for the simply supported multi-span structure, discretized by using linear beam elements
according to the static scheme presented in Fig. 6. Once more the inertia moment
and Young modulus are the Gaussian input random variables defined uniquely by
their expected values and coefficients of variation, used further as the additional study
parameter. The polynomial approximation of the response function – magnitude of the
critical load (Pcr) vs. inertia moment (J) – is given in Fig. 7. The subdivision of the
variability interval for this random input variable is non-uniform, and the final form of
this response function is smooth, concave, with no local oscillations. Let us mention that
the usage of the symbolic least squares fitting procedures enables further systematic
corrections of the local weights until the satisfactory and efficient approximation is
obtained. After Euler formula, one can suppose that the higher inertia moment, the
larger critical force magnitude, and it is reflected well on Fig. 7, however now, this
interrelation, although preserving directional proportionality, is nonlinear unlike in the
Euler formula. Let us finally note that the analyzed steel frame was modeled by using
fully rigid connections between all the structural members, but in fact they exhibit
some semi-rigid behavior, which also influences in some way its stability and needs
to be taken into account in further reliability analysis.

Final evaluation of the reliability indicator with respect to two input parameters
and their coefficients of variation is given in Fig. 8. Once more we introduce the limit



R         G. . . 289

Fig. 6. FEM model of the multi-span steel frame.
Rys. 6. Model MES wieloprzęsłowej ramy stalowej

Fig. 7. Polynomial approximations for the critical force vs. inertia moment.
Rys. 7. Wielomianowa aproksymacja siły krytycznej w funkcji momentu bezwładności
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Fig. 8. Reliability indicators for the 2D FEM model of the steel multi-span frame.
Rys. 8. Wskaźniki niezawodności dla dwuwymiarowego modelu MES wieloprzęsłowej ramy stalowej

values of this indicator in order to make a quantitative verification of the safety region.
Similarly as before, the random fluctuations in Young modulus are more dangerous to
this structure than the fluctuations of inertia moments of the columns (with the same
magnitude). This structure is significantly more sensitive to the random fluctuations
since unconditional safety for E=E(ω) is obtained for α(E)60.08 and for α(J)60.12 in
the case of J=J(ω). Now reliability indices tend more apparently and much faster to
0 together with α → ∞. The safety margin in-between 1 and 50 years exploitation is
about few hundreds in both coefficients of variation, so that practically is really small.

4.4. C  

The last computational example serves for a demonstration of the RFM approach to the
large scale problem also with initial Gaussian uncertainty. According to the practical
needs of the underground structures design, a fundamental issue is the optimal deter-
mination of the structure thickness. Since the entire structure is a small tank serving as
a water reservoir or the fluid phase waste container manufactured from the polymers
injected into a solid form by the rotation technique of the cylindrical part and welding
of both ends, the arbitrary constant thickness is usually adopted. The following data
characterize this structure: (a) Young modulus E=1400 MPa, (b) Poisson ratio ν=0.35,
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(c) mass density equivalent to 15 kN/m3, (d) total number of nodal points – 4989, (e)
total number of 4-noded shell finite elements with Coons automatic meshing algorithm
– 4752, (f) structure height – 3.0 m, (g) cylinder radius – 1.8 m, (h) mean value of
its thickness – 0.032 m (a discretization is shown in Fig. 9). The upper cover has a
spherical character with the height equal to 0.10 m and this point is 1.50 m below the
ground surface, the bottom plate is simply supported on its entire lower surface. The
whole structure is modeled as an empty container subjected to all external loads as
subsoil pressure, dead load, snow and vehicle uniform loadings, specified according
to the additional Eurocodes. The stability analysis performed also by using the FEM
engineering system ROBOT deals with this non-uniform shape of the external load,
where its critical magnitude is a subject of this computational study. The probabilistic
moments are determined via the RFM approach implemented in the system MAPLE,
where the structural polynomial response between this critical magnitude and structural
thickness is finally included into the stochastic perturbation procedure. Let us note here
that material properties are usually treated as random or even stochastic for the structu-
ral members manufactured from composites and/or the reinforced plastics; geometrical
parameters are randomized accidentally but similarly to the previous analyses we ran-
domize both thickness and Young modulus [13,14]. Polynomial approximation given in
Fig. 10 below is completed from 23 points probing procedure around the mean value of
the structural thickness specified on the horizontal axis. The RFM is based on uniform
subdivision of the computational domain and the least squares fitting procedure returns
here the satisfactory, smooth response function with no end oscillations even for the
equal unit weights. Of course, the RFM is applied here by using global version of this
method since the thickness is designed as constant and the single parameter results
from this analysis (unlike for stresses or displacements, where local formulation would
be necessary). Unlike in previous examples, the response function is monotonously
increasing for the given thickness variability interval (according to initial predictions)
and is convex everywhere.

The reliability indicators visualized in Fig. 11 demonstrate a large difference betwe-
en the uncertainty in Young modulus and inertia moment (practically thickness). The
unconditional safety region (independent from the chosen reliability class) is noticed for
α(J)60.14 (upper curve); in the case of E=E(ω) is significantly smaller, i.e. α(E)60.05
(almost deterministic problem). It shows that the optimization of this structure needs to
be processed by an additional increase of Young modulus rather (thanks to the usage
of high density or simply reinforced polymers, for instance) than by enlarging of the
shell thickness. As it can be expected from this analysis, β = β(E,α) tends to 0 very
fast (almost within the given variability interval). Is it also clear that the unconditional
failure is obtained for α(E)>0.075 and, separately, for α(J)>0.24 (almost three times
larger than before). Let us note that it would be of some practical importance to consider
the uncertainty in the external loads – more extensive vehicle motion on the surface or
higher subsoil above this container. Finally, it should be underlined that an application
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Fig. 9. FEM model of the cylindrical shell structure.
Rys. 9. Model MES cylindrycznej struktury powłokowej

Fig. 10. Polynomial approximation for the shell critical pressure vs. its thickness.
Rys. 10. Wielomianowa aproksymacja dla ciśnienia krytycznego powłoki jako funkcji jej grubości
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Fig. 11. Reliability indicators for the cylindrical shell FEM model.
Rys. 11. Wskaźniki niezawodności dla modelu MES cylindrycznej konstrukcji powłokowej

of the Monte-Carlo simulation for this case study would be extremely time consuming,
especially for the situation of the two correlated random input variables; this is not
the case of the stochastic perturbation method, where some additional modifications
of Eqns (2.6-2.7) are really necessary.

5. C

Two alternative computational techniques have been verified in this paper during deter-
mination of the reliability indicator of the structures – Monte-Carlo simulation and the
generalized stochastic perturbation technique. Even for relatively large values of the
input coefficient of variation – up to 0.25 – they both return the same final values of β
in the case of the structures examined. It significantly shortens the computational time
and allows for the probabilistic analyses of reliability with the use of the commercial
FEM packages like ROBOT or ABAQUS in conjunction with some computer algebra
system like MAPLE or MAXIMA, for instance. From the methodological point of view
it would be essential and the very instructive to re-compute now all indices according
to the Second Order Reliability Method to provide a discussion of the FORM and
SORM on the basis of the real engineering structures stability.

It is confirmed directly by the computations provided that the higher uncertainty in
design parameters, the smaller reliability indicator and, effectively, the larger probability
of failure. Although this study has been performed separately for two design parameters
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important in steel and, generally, thin-walled structures – Young modulus and inertia
moment, the entire perturbation-based approach may be modified accordingly to inclu-
de a group of correlated or uncorrelated random quantities. Undoubtedly, an interesting
problem which can be solved in the next turn, is a temperature-dependent stochastic
reliability of especially steel structures – the additional data on thermal fluctuations of
all physical parameters of the engineering steels are included into the separate part of
Eurocode 3, so that probabilistic Finite Element Method analysis of those special cases
in the view of Eurocode must bring qualitatively new results. Such a simulation pro-
cedure needs to be important in fire safety designing and verification for the variety of
steel structures. There is also no doubt that the stochastic post-critical behavior [15,16]
would be of the paramount importance in the stability of complex steel structures,
where the initial loss of stability may undergo in quite different paths. Further compu-
tational models in that area undoubtedly must obey a simulation of the uncertainty in
steel structures connections, sometimes decisive for their overall reliability. However,
it needs a preparation of the micro-scale discretization of such structures, which needs
a precise knowledge about the probabilistic methods correctness and limitations (like
the issues discussed above), as well as decisively more powerful computers and the
additional software.
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MODELOWANIE NIEZAWODNOŚCI W PEWNYCH ZAGADNIENIACH STATECZNOŚCI
SPRĘŻYSTEJ Z WYKORZYSTANIEM UOGÓLNIONEJ STOCHASTYCZNEJ METODY

ELEMENTÓW SKOŃCZONYCH

S t r e s z c z e n i e

Zasadniczym problemem omawianym w tej pracy jest zastosowanie Uogólnionej Stochastycznej Metody
Elementów Skończonych opartych na metodzie perturbacji stochastycznej do wyznaczania wskaźników
niezawodności w przypadku stateczności konstrukcji budowlanych pracujących w zakresie sprężystym.
Wskaźnik niezawodności jest modelowany zgodnie z definicją podaną w normie Eurokod odpowiednią
dla analizy niezawodności pierwszego rzędu, a obliczony dzięki zastosowaniu rozwinięcia wszystkich
funkcji stanu w szereg Taylora ze współczynnikami z uwzględnieniem wyrazów wyższego rzędu. Proce-
dura obliczeniowa jest oparta na jednoczesnym zastosowaniu programu Metody Elementów Skończonych
ROBOT oraz systemu algebry komputerowej MAPLE i jest wykorzystana do analizy obciążeń krytycznych
w popularnych konstrukcjach inżynierskich takich jak pręt Eulera, dwu i trójwymiarowe modele jedno- i
wieloprzęsłowej ramy stalowej, jak również polietylenowy zbiornik podziemny o kształcie cylindrycznym.
Porównanie metody perturbacji stochastycznej z techniką symulacji Monte-Carlo w całym zakresie loso-
wej zmienności wykorzystywanych parametrów wejściowych na przykładzie zagadnienia Eulera pokazuje
efektywność i ograniczenia zastosowanej metody perturbacji.
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