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Controlling effect of palaeo-tectonic stress field
on gas occurrence

Weidong Gong1, Kunyun Tian2, Ruilin Zhang3, Xing Xu4,
Wenyong Zhang5, Juan Luo6, Qing Yuan7

Abstract:The paleo-tectonic stress fieldwas hereby inverted by using the stereographic projectionmethod
through field and underground observations of conjugate shear joints. On the basis of analyzing and
studying the characteristics of gas occurrence in mining areas, the control effect of paleo-tectonic stress
field on gas occurrence was discussed from three aspects of gas generation, preservation environment
and gas migration. The results show that: (1) During the Indosinian and early-middle Yanshan period,
the coal seam was buried deep, and the temperature and pressure conditions were suitable for massive
gas generation, especially during the Indosinian period featuring massive gas generation and weak gas
migration; (2) During the late Yanshan period, the metamorphic evolution rate of coal seams accelerated,
secondary hydrocarbon generation occurred in the coal seams, and a large amount of gas was generated.
Meanwhile, the gas migration was enhanced. The gas generation amount was much larger than the
emission amount, therefore, making it still a period of massive gas generation in general; (3) During the
Himalayan period, the coal measure stratum was in the uplift stage, and a large number of geological
structures were developed in the stratum. The tectonic stress field in this period caused the escape of
massive coal seam gas. Multi-stage tectonic stress field acted on coal measures strata in turn, resulting
in gas generation in coal seam and gas migration at the same time. Besides, gas occurrence is the
superposition effect of gas generation, preservation conditions, and gas migration in coal seam.
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1. Introduction

China is the country with the most coal and gas outburst accidents. So far, more than
15,000 outburst accidents have occurred [1,2]. During 2012–2021, a total of 57 outburst
accidents happened in China, and a total of 354 people died in CAGO accidents. The
accident brought great pain to the miners, as well as huge economic losses and casualties
to the society, imposing a rather serious impact on the entire social environment [3–5],
also a negative impact on the international image of China. Gas is the main factor causing
casualties in outburst accidents [6–8], and an outburst power source as well. Exploration on
the gas occurrence law and its causes in mining areas is extremely important for preventing
coal and gas outburst accidents [9–11]. The law of gas occurrence is the basis of formulating
efficient gas disaster prevention measures. In areas with high gas content and pressure,
technical measures such as gas drainage, pressure relief and permeability enhancement
need to be taken. By studying the law of gas occurrence, coal mines can take targeted gas
prevention measures to improve the economic and safety benefits of mines. Gas content are
generally high in all mines in the Eastern Pingdingshan mining area, but the distribution is
uneven. Only by clarifying the causes of gas imbalance can the law of gas occurrence be
more accurately studied. However, less research on the causes of unbalanced gas occurrence
has been reported, which is generally considered to be caused by geological structures, but
geological structures only form differentiated gas preservation conditions and flow channels.
Gas migration requires dynamic conditions, which is the paleo-tectonic stress field, and
the geological structure is also formed by the paleo-tectonic stress field. In this case, it is
necessary to conduct a more comprehensive study on the process of the paleo-tectonic
stress field controlling the occurrence of gas in mining areas. By collecting the data of mine
gas content and pressure, combined with actual test data and gas geological data, the gas
occurrence law was hereby studied. On this basis, reasons for the unbalanced gas occurrence
in the study mining area were correspondingly analyzed. The paleo-tectonic stress field is
the most critical factor, which mainly controls the gas occurrence in the mining area by
affecting the gas generation, preservation conditions and gas migration.

2. The gas occurrence law

2.1. Gas content and gas pressure distribution characteristics

Pingdingshan No. 8, No. 10, No. 12 and Shoushan No. 1 mines are all outburst mines.
Herein, considerable original gas content and pressure data of the Ji Coal Seam were tested
on site, so that the accuracy of the data was ensured. A total of 120 groups of gas content and
92 groups of gas pressure were tested for the Ji Coal Seam. Based on these data, the original
gas content and gas pressure contour map of the Ji Coal Seam in the Eastern Pingdingshan
mining area is drawn, as shown in Fig. 1 and Fig. 2.

The maximum gas content of the Ji Coal Seam in No. 8, No. 10, No. 12 and Shoushan
No. 1 mines is above 24 m3/t, and the maximum gas pressure is 2.5 MPa. However, the
maximum gas content is only 16 m3/t, the maximum gas pressure is only 0.74 MPa, and
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Fig. 1. Contour map of the gas content of the Ji Coal Seam in the Eastern Pingdingshan mining area
(unit of the gas content in the figure: m3/t)
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Fig. 2. Gas pressure contour map of the Ji Coal Seam in the Eastern Pingdingshan mining area (unit
of the gas pressure in the figure: MPa)

the gas pressure in most areas is between 0.3–0.5 MPa in No. 1 mine which is adjacent to
No. 10 mine (Fig. 1 and Fig. 2). No. 1 mine is a non-outburst mine, and the other four mines
are outburst mines. The gas content and gas pressure in the outburst mine are much higher
than those in the non-outburst mine, so the gas occurrence presents an obvious zoning trend.
The gas content and gas pressure are the largest in the area of the Lingwushan syncline axis,
and the lowest in the Baishishan anticline axis area, indicating the impact of the geological
structure on gas occurrence.
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2.2. Gas occurrence anomaly in geological structure areas

2.2.1. Characteristics of gas occurrence in fault areas

The extrusion direction of the modern tectonic stress field in the study mining area was
the NEE direction. The stress field acted on the NW and NWW trending faults, and the fault
sealing gas effect was favorable. Therefore, the gas emission from the working face near this
type of fault generally increased. On the contrary, the NE and NEE-trending faults exhibited
tensile properties, which was conducive to gas escape. The main faults in the mine, such
as the Baishigou reverse fault and the Niuzhuang reverse fault, were NW-trending faults
formed during the Yanshan period. The gas content and gas pressure in the fault-affected
area were significantly higher than those not in the surrounding structure area. In particular,
the gas content near the Baishigou reverse fault was as high as 24 m3/t and 26 m3/t, much
higher than that in the non-structural area.

2.2.2. Characteristics of gas occurrence in fold areas

The gas in the syncline axis generally increased, while that in the anticline axis generally
decreased. The gas content in the axis of the Niuzhuang and Lingwushan syncline were 14
and 24 m3/t, respectively, while the gas content in the axis of the Guozhuang and Baishishan
anticline was 6 and 7 m3/t (Fig. 3). The gas content in the axis of the anticline was much
lower than that of the axis of the syncline. Among them, due to the shallow burial depth
and the existence of coal seam outcrops in the Niuzhuang syncline, massive gas escaped,
thereby resulting in a relatively low gas content. Besides, the gas content gradually decreased
from the axis of the Niuzhuang syncline to the axis of the Guozhuang anticline, while that
gradually increased and reached the maximum from the axis of the Guozhuang anticline to
the axis of the Likou syncline, decreased gradually from the axis of the Likou syncline to
the axis of the Baishishan anticline, and increased gradually from the axis of the Baishishan
anticline to the axis of the Lingwushan syncline.
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3. The characteristics of paleo-tectonic stress field

In the research mining area, 32 conjugate shear joint measurement points, including 26
field measurement points and 6 underground measurement points, were selected (Fig. 4 and
Fig. 5). A total of 1415 shear joint data were collected, and then the paleo-tectonic stress
experienced by the mining area after the Permian was inverted by using the stereographic
projection method.

Fig. 4. Conjugate shear joint diagram of field test points

Fig. 5. Joint analysis diagram of some field measurement points
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The Eastern Pingdingshan mining area mainly experienced four tectonic stress fields,
i.e., Indosinian, early-mid Yanshan, late Yanshan and Himalayan. The direction of the
maximum principal stress in the Indosinian period was nearly NS (Fig. 6a); The direction of
the maximum principal stress in the early and middle Yanshan tectonic stress field was near
NW, the stress field intensity is larger (Fig. 6b); The direction of the maximum principal
stress in the late Yanshan period was nearly NE, the stress field had the largest action
intensity (Fig. 6c); The maximum principal stress direction of the tectonic stress field in
Himalayan period was close to NNE direction, the action intensity was weaker than that in
the late Yanshan period (Fig. 6d).
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Fig. 6. The main tectonic stress field experienced after coal formation in the Eastern Pingdingshan
mining area: a) Indosinian period, b) Early-middle Yanshanian period, c) Late Yanshanian period, d)

Himalayan period

4. Research on the control effect of paleo-tectonic stress
field on gas occurrence

The gas occurrence in the mining areas was the superposition effect of gas generation,
preservation conditions, gas migration and accumulation, and these processes were closely
related to the paleo-tectonic stress field. The paleo-tectonic stress field mainly affected the
amount of gas generation through uplifted strata and dynamic metamorphism, affected the
gas preservation conditions through the formation of geological structures, and affected the
gas migration through the stress-driven mechanism.
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4.1. Effect of paleo-tectonic stress field on gas generation

The dynamic response mechanism dominated by the paleo-tectonic stress field was the
main factor for the diversity of coal seam hydrocarbon generation [12–14]. The Ji Coal
Seam was formed during the Permian period [15], and at the end of the Triassic period,
the burial depth reached its maximum, i.e., about 2200 m, and the coal seam temperature
was above 125◦C, forming the most favorable gas generation conditions in its evolution
process (Table 1). The Indosinian tectonic stress field was weak in the study area, mainly
manifesting as a certain uplift of the coal-measure strata. Actually, the coal seam had been in
a high temperature and high pressure environment for a long time, and the coal was mainly
gas coal. The gas coal had a strong hydrocarbon generation ability. Therefore, massive gas
was generated during this period. The coal seam gas preservation conditions were good,
and this period was favorable for coal seam gas generation.

Table 1. Recovery of thermal evolution history in the Pingdingshan mining area

Geological
age

Tectonic movement
stage

Buried
depth (m)

Geothermal
field (◦)

Heating
temperature (◦)

Coal rank
R0, max%

N–Q
Himalayan period

800
4◦

44 1.32
E 300 36 1.32

J3–K
Middle and late
Yanshan period 800 8◦ 155 1.32

J1–J2
Early Yanshan

period 1650 4◦ 94 0.73

T Indosinian period 2105 4◦ 104.2 0.68
P3 Hercynian

1005 4◦ 60.2 0.37
P2 155 4◦ 26.2 0.22

During the early-mid Yanshanian period, the coal seams were dominated by gas-fat coal
and fat coal. The tectonic stress field in the early and mid-Yanshan period had a stronger
effect on the Pingdingshan coal-measure strata than that in the Indosinian period. Large-scale
structural deformation caused a lot of frictional heat, and the coal seam was buried at a depth
of about 2,200 m during this period (Table 1). Moreover, the temperature was high, which
is beneficial to gas generation.

During the late Yanshan period, a large amount of frictional heat was generated (Table 1).
The results of the thermal evolution history of Pingdingshan showed that the coal seam
temperature was around 155◦ in this period, secondary hydrocarbon generation occurred,
and massive gas was generated. The degree of coal seam metamorphism increased sharply,
mainly in fat coal, and the gas storage capacity of coal reservoir increased sharply. The late
Yanshan period was the stage of massive gas generation in the coal seam.

During the Himalayan period, the temperature of the coal seam increased, and the
pressure environment was relatively high. However, the coal seam was mostly fat coal, and
the coalification process was terminated. In this case, there was less tectonic stress field and
coal seam gas generation during this period (Fig. 7).
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Fig. 7. Coal seam burial history and gas generation stage map in the study area

4.2. Effect of paleo-tectonic stress field on the gas preservation
environment

The gas preservation environment was mainly determined by the roof and floor of the
coal seam as well as the geological structure. Some roof and floor strata were tight rock strata
such as mudstone without tension faults, favorable for gas preservation. Syncline structures
and reverse faults were formed by compressional tectonic stress fields. The compressional
shear stress was concentrated in the area near the axis of the syncline and the fault plane of
the reverse fault, where the tectonic coal was developed. The roof and floor rock formations
were also in a compressive state, which had a good sealing effect on the gas, and the gas
was not easy to escape. Anticlines were formed by compressional tectonic stress fields, and
normal faults were formed by tensional tectonic stress fields. There often developed a large
number of tensional joints in areas near the axis of anticlines and normal faults. Tensile
fractures were usually developed in the roof and floor strata, and gas could easily escape
along the coal-rock fractures. Such an environment was not conducive to gas preservation.
The gas content and pressure in the axis of the Guozhuang anticlinein were low, with
the lowest gas content being only 4 m3/t. The anticline axis and normal fault areas were
unfavorable for gas preservation.

4.3. Influence of tectonic stress field on gas migration

4.3.1. The affecting mechanism of tectonic stress field on gas migration

The paleo-tectonic stress field acted on the coal-measure strata, resulting in the develop-
ment of faults and folds of different levels. Fracture planes in geological structures (as large as
regional control faults, such as the Gou-Lifeng fault, and as small as fractures in coal seams)
were good migration flow channels [16,17]. The fracture surface was the low-stress area, and
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the gas in other high-stress areas migrated to the fracture surface [18–21]. Under the continu-
ous action of the stress field, the fracture surfaces of different levels could be connected, and
the gas continued to flow to the low-stress area along the connected flow channel. When the
low-stress area was well sealed, gas accumulated in the low-stress area. The influence of the
tectonic stress field on the seepage migration effect could be described from the following
two aspects: (1) The structures such as faults and fissures of different scales generated by
the tectonic stress field were the channels for gas seepage migration; (2) The paleo-tectonic
stress drove the free gas to migrate from the high stress area to the low stress area.

The normal fault was formed by the tensional tectonic stress, the fault plane was in
a state of tension, and extensional fractures were developed. The tectonic stress drove the
gas to migrate from the upper and lower walls to the fault plane area, and massive gas
finally escaped from the fault plane area (Fig. 8a). The fault plane of the reverse fault
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Fig. 8. Gas migration map in geological structure areas: a) Gas migration map in normal fault areas,
b) Gas migration map in reverse fault area, c) Gas migration map in the fold region
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had been in a compressive state for a long time. The permeability of the coal body was
extremely low, which was not conducive to gas escape. However, the fault plane area was
still a low-stress area, and a small amount of gas escaped from the fault plane. The gas
content was usually larger in the foot wall of the reverse fault (Fig. 8b). For the syncline
structure, the compressional shear stress was concentrated in the axial area, where the
tectonic coal was developed. The gas flow channels such as fissures and fractures in the coal
body were in a compressive state, and the coal body permeability decreased seriously. The
tectonic stress drove the gas to migrate to the two wings with a lower stress; A large number
of tension joints were often developed in the axial area of the anticline structure. Tectonic
stress drove gas to migrate from the two wings of the anticline to the axis of the anticline,
and massive gas was dissipated in the axis of the anticline (Fig. 8c).

4.3.2. Influence of tectonic stress field evolution on the occurrence of coal seam gas

In the Indosinian period, the vertical gas migration distance was long, and the escape
time was short, thus resulting in good preservation of coalbed methane; The stress field was
weak, the difference of coal seam pressure gradient in the horizontal direction was small, so
the gas migration was generally weak. During this very period, the gas content increased
more, but the gas occurrence in the mining area was relatively uniform.

In the early-mid Yanshan period, the metamorphic evolution of the coal seam was
stagnant, and the amount of gas generated as well as the temperature and pressure of the coal
seam was reduced. The strength of the tectonic stress was still small, and the development
degree of cracks was larger. The gas migration in the horizontal direction was stronger than
that in the Indosinian period, but the gas migration was still relatively weak on the whole.
The tectonic stress field caused the gas saturation of coal seams to be lower, and the gas
occurrence in the mining area was still relatively uniform during this period.

The tectonic stress field in the late Yanshan period exerted a strong effect on the studied
mining area, and the main structure was basically formed during this period. Besides, the
temperature of the coal reservoir increased sharply to about 155◦, secondary hydrocarbon
generation occurred, and the gas storage capacity of the coal seam increased dramatically.
The stress in the horizontal direction drove massive gas to migrate to the lower stress area,
and the horizontal migration effect was enhanced. The gas content and pressure were high
in the axial area of the Likou and Lingwushan syncline, but small in the Baishishan and
Guozhuang anticline. The stress in the wing region near the syncline axis was greater than
that in the wing region near the anticline axis. Besides, the tectonic stress field drove the gas
to migrate from the wing region near the syncline axis to the wing region near the anticline
axis, and finally escaped through the anticline axis region. As a result, the gas occurrence
decreased with the increase of the distance from the syncline axis, and increased with the
increase of the distance from the anticline axis, as shown in Fig. 9.

In the Himalayan period, due to the decrease in temperature and pressure conditions,
the evolution of coal quality was basically stagnant. The gas adsorption capacity of the coal
reservoir was enhanced, and part of the free gas was converted into adsorbed gas, and the
gas migration was strong in the horizontal direction. The structures were generally uplifted
to a certain extent, and coal seams were outcropped in local areas of individual structures,
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thus resulting in coal seams partially located in the gas weathering zone. For example, in the
Niuzhuang syncline, coal seam outcrops appeared in the edge region of the SW wing of the
Niuzhuang syncline. As a result, the gas enriched in the syncline area was dissipated in large
quantities, and the coal seam gas was greatly reduced; In general, the gas-enriched parts
were still in the axial area of the controlling syncline except for the Niuzhuang syncline,
and the low gas area was still in the axial area of the controlling anticline in the mining area.
In this case, the tectonic stress in this period had a limited impact on the gas occurrence of
the entire mining area, and the gas occurrence in local areas was mainly affected (Fig. 10).
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5. Conclusions
The influence of the paleo-tectonic stress field on the gas occurrence in the Eastern

Pingdingshan mining area could be divided into three key periods: (1) During the Indosinian
and early-middle Yanshanian periods, the coal seam was buried deep, when, the temperature
and pressure conditions were suitable for massive gas generation, especially the Indosinian
period, which was the stage of massive gas generation and weak gas migration; (2) During the
late Yanshan period, the metamorphic evolution rate of coal seams accelerated, secondary
hydrocarbon generation occurred, and massive gas was generated. Meanwhile, a large
number of geological structures were formed, and the gas migration was enhanced. Besides,
the gas generation amount was much larger than the gas escape amount, making it still
a period of massive gas generation in general; (3) During the Himalayan period, the coal
measure stratum was in the uplift stage, and a large number of geological structures were
developed in the stratum. This period was the stage of massive escape of coal seam gas.
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