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Form-finding of optimal cable nets under self-weight based
on the Force Density Method

Izabela Wéjcik-Grzgba!

Abstract: Form-finding of cable nets is the main topic of this paper. This initial stage of design path is
grounded on the enhanced version of the Force Density Method. Apart from the basic form-finding it
includes optimal shaping and adding self-weight of a cable structure. Minimal sum of cable lengths in the
structure is treated here as a favourable initial configuration for reaching geometry and force distribution
under prestress and self-weight. Regarding tensile forces obtained this way, cable sections can be proposed
as the first approximation in further design process not included in this analysis. The basics of classic version
of the Force Density Method are introduced in the paper. The nonlinear version of this method is used to
solve an optimization problem of minimum weight cable net. The essentials of the procedures for achieving
optimal shape and adding self-weight are also included and constitute the Extended Force Density Method
proposed by the author. Defining proper input data for the self-weight analysis is crucial to find a new shape
possibly close to the optimal one and is also discussed. A few examples of optimal or partially optimal
cable nets are presented. It is shown that adding self-weight and elastic material properties can preserve the
optimal shape with high accuracy. This allows to switch from the purely geometric problem of form-finding
to the initial form of a structure with assumed sections and material. All calculations are performed with the
use of the self-developed program UC-Form which is also briefly presented.
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1. Introduction

Completing Paraboleum (or Dorton Arena) in Raleigh in 1952 was a breakthrough in
the history of cable roof structures. This particular object designed by Maciej Nowicki and
many others erected afterwards have been greatly appreciated by the architects and structural
engineers around the world. Their specific features differ them from the traditional “rigid”
structures and require special approach. Full utilization of cable cross sections carrying only
tension is achieved, which is highly desirable in the age of sustainable architecture. Apart
from being lightweight, economical and efficient, cable structures are also visually attractive.
Steel cables are characterised by high tensile strength which enables spanning large areas
without inner supporting colliding with the interior design. That is why they are mainly used
in stadiums, sports, exhibition and concert halls.

The main disadvantages of cable structures result from negligibly small bending and
shear stiffness of cables. In order to achieve transverse stiffness which enables transferring
normal loads to the supports such structure needs to be prestressed and gain geometrical
stiffness. Before that a cable net is geometrically instable. What is more, adding new loads
results in significant changes in the shape and force distribution which means that cable
structures are geometrically nonlinear [1]. These drawbacks have been examined since the
sixties of 20th century and resulted in many methods of form-finding. The most appreciated
are Dynamic Relaxation Method, Transient Stiffness Method, Force Density Method and their
modifications [2]. The Force Density Method appears to be simple, elastic and universal tool
for form-finding of not only cable but also tensegrity and membrane structures. Proposed by
Schek in 1974 in [3] is constantly developed, refined and used to solve new problems [4-6].

Nowadays many researchers focus on the optimisation methods, as we tend to sustainable
design. Force Density Method can be used as the main or auxiliary tool in optimisation process
of tensile or compressive structures as it is shown in [7—11]. Some similarities with minimal
surfaces are also examined in the case of cable and membrane structures to find minimal-length
or minimal-area solutions [6, 12—-14].

Form-finding is the first step of design process of tensile structures and is conducted to
determine the initial geometry and prestress in the cables. This configuration is then loaded
with self-weight and all the live loads and submitted for traditional static and/or dynamic
design. Proper prestress of a cable net should provide required spatial stiffness and adding
self-weight shouldn’t have significant influence on the configuration, as it was shown in [15].
But self-weight is crucial when the structure consists of slack cables and particularly while
analysing erection process or failure of chosen elements. Also self-weight of quite large cable
sections can influence tensile force distribution which is pointed in [16]. Moreover using elastic,
catenary element for form-finding gives information about the initial (unstrained) element
lengths needed in subsequent design stages as it is stated in [17]. Finally, the design procedure
presented in Eurocode 3 [18] advises to treat gravity loads and prestress as one load case.
Hence it would be beneficial to get initial configuration under pretension and self-weight and
better estimate target sections and unstrained lengths. In a few papers there was some attempts
to manage this problem. For example authors of [16] and [19] loaded all the cable elements as
if they were taut. They submitted point loads equal to half of elements self-weight in the nodes.
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In the first paper the force density was redefined in order to take the exact values of reactions
into account. The approximate, parabolic formulation of a cable element is employed in the
second article. In both papers new equations regarding behaviour of a cable net are added to
the original FDM system of equations. Article [17] lacks the details of the utilized methods
but force density is defined on the basis of the force value in one end of the element.

The main aim of this article is to present the method of adding self-weight of straight
(prestressed) and catenary (slack) cables at the stage of form-finding. Moreover the author shows
that such configuration can be very close to the optimal one which is a new approach. Universal
method of adding self-weight of taut and slack elastic cable elements to Force Density Method
was proposed by the author in [20] and [21] and is briefly explained in Chapter 3 and utilized
in calculation examples in this article. Moreover, for economical material use, the optimisation
method is proposed. Minimising self-weight of a cable net results in a configuration under
uniform prestress which is called here optimal. Cable lengths found in this analysis are then
used to define initial lengths for the analysis under prestress and self-weight. As it is proved in
the examples in Chapter 6, such configuration can be very close to the optimal one. It also
fulfils the idea by Wanda Lewis who claims that minimal-length or minimal-surface tensile
structures are the most rational solutions for the initial shape [1]. Such an approach was also
presented by the author in [22].

2. The essentials of the Force Density Method

The calculation procedure presented in this paper is based upon the Force Density Method
(FDM) proposed by Schek in [3]. According to his idea a cable net can be defined as a set of
straight, weightless truss elements working only in tension, ended with nodes. The structure is
supported in fixed nodes with coordinates X, y, z. The remaining nodes are free and can be
submitted for point forces p,p,, p,. Figure 1 presents 3-elements example of a cable net along

with the incidence matrix [CC] defined in FDM to describe the elements connectivity.
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Fig. 1. 3-elements cable net and its definition
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First columns of the matrix correspond to free nodes (i.e. C), second columns correspond to
fixed nodes (i.e. 5) and rows correspond to elements. The matrix consist only of the numbers 1,
—1 and 0 which mean consecutively: starting and ending node of the element and no connection of
the node with a particular element. Square, diagonal matrices and corresponding vertical vectors
with elements from diagonals are marked with the same letter in capital and small version.

The objective of a form-finding problem is to find coordinates of free nodes x, y, z which
satisfy equilibrium equations of the structure. Nodal equilibrium equations can be defined as
shown below:

C'X,\L'n=p,
2.1) C'YAL'n=p,
C"Z\L'n =p,

where matrices X, Y, Za contains projections of element lengths in x, y and z direction.
These equations are nonlinear due to unknown coordinates x,y, z. Defining a new quantity
called force density as ratio between element force and length ¢ = L™'n changes this system
of equations into a linear form. The solution with the use of auxiliary matrices D = CT QC,
D = CTQC is shown below:

x=D"! (px —D_x)
22) y=D"(p, - Dy)
z=D" (pZ —D_z)

In order to find the configuration and tensile force distribution of the previously defined
prestressed cable net the values of force density in elements have to be proposed. The
proportions between force density values determine the geometry and their absolute values
yield the prestress level.

3. The Extended Force Density Method with self-weight

Prestress and self-weight of the cable structure are present in each load combination so
it is convenient to treat them as a starting point for subsequent analyses under other live loads.
Extended Force Density Method (EFDM) proposed by the author in [21] enables form-finding
of the cable nets under these two loads. What is more in this approach a cable net can be fully
or partially prestressed or even fully taut. For this purpose the exact, catenary element was
introduced, as opposed to the commonly used parabolic element, which has some accuracy
limitations. In this method a cable under self-weight which shape is catenary is replaced by
statically equivalent straight element as it is shown in Fig. 2. The forces acting along the catenary
element are separated into constant Ny, and variable components corresponding to prestress and
self-weight. The latter is submitted to substitutive element as reaction forces R4 and Rp in nodes.
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Substitutive cable element
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Fig. 2. Substitutive cable element in EFDM

In order to introduce this modification to the classis version of the FDM two stages are
needed. First the external, vertical loads vector p,, have to be summed with the vector p,. of nodal
reactions from self-weight. This vector stores the sums of reactions R4 and Rp in each node.

Dx:px—D_x

3.1) Dy=p,~-Dy
DZ = (pz +pr) —DZ

Second step involves iterative procedure in which new force density values for the structure
under self-weight are obtained. For this purpose catenary element equilibrium equation (3.2)
is used to build a new system of nonlinear equations (3.3) for unknown force densities (details
can be found in [22]).

HLy

H
(3.2 gwl(q) = —F—+—

-1=0
EA u

arsinh (E) + arsinh (M)
H H

In Eq. (3.2) Ly is the initial cable length, EA is a longitudinal stiffness, u is self-weight per
meter and other symbols are presented in Fig. 2. Tensile force components V4 and H are also
functions of the force density g. New system of nonlinear equations (3.3) applies for all the
elements in the structure and can be solved with iterative Newton procedure.

(3.3) 8y (4.x(q).y(q).z(q)) = 0

4. Optimization — minimum-length problem

Schek in [3] presented three major problems of cable net minimisation with the aid of the
FDM. Dzierzanowski and Wéjcik-Grzaba in [11] focused on one of them which is the sum
of cable lengths minimisation. This problem appears to be obvious from the economy and
sustainability point of view. It can be shown that starting from self-weight minimisation of
a cable net we can get to the state of uniform prestress state.
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Starting from the minimum-weight setup of the structure and assuming homogenous
materials we get to minimum-volume problem. After putting limit tensile stress o7 in all
cables and constant cross-section A; along the i-th element (i = 1,.. ., s) the overall volume V
of a cable net can be written as:

] S
4.1 V=—>NiL, N;=Aor
o1 33

Now making the supposition of uniform prestress in the whole cable net to tensile force
N = Apor, where Ag is a cross-section area sufficient for the assumed level of tension, the
solution of minimisation problem becomes as shown in Eq. (4.2):

N
(4.2) V = Agmin {Z Li (x,y,2)|x,y,z € R™ }

i=1

Let’s introduce a new, auxiliary problem of minimisation of the functional: g (¢, x,y,z) =
IT Q1. After defining force density matrix for uniformly prestressed cable net as: § = AgorL™'1
and putting it in the above formula for g (¢, x, y,z), we get a new form of the functional:

1 S
(4.3) —0(gx.9.2) = AL = 49 > L; (x,y,2)
Ir i=1

Minimization of the functional gives the same formula as in Eq. (4.2), so the supposition
of uniform prestress state is equivalent to minimum-volume structure.

As it was shown, in order to find the optimal configuration, it is necessary to impose the
state of uniform prestress in the whole cable net. It can be achieved by adding to the FDM new
nonlinear system of equations for unknown values of force density as Schek proposed in [3]:

4.4) g@)=n"—-Ayorl1 = Q" — Agor1 =0

This version is further called nlFDM and is used to achieve the optimal configuration.
The vectors with asterisks contains only elements taking part in the optimisation process. In
particular cases it is justified to optimise only the selected parts of the structure, as it is shown
in Chapter 6. Solving the system of equations (4.4) gives the new force density vector defining
geometry of the optimal structure. The solution can be found with the use of iterative Newton
procedure. The case of partial optimisation yields underdetermined system of equations, which
can be solved with the aid of least square approximation. The increment of the force density

-1
vector in each iteration can be defined as: Ag = G*b, where: G™ = GT (GGT) ,G = g—g

s

9(n-1)
b=-g (q(n_l)) and all the elements of matrix G are given in [21].

Optimal configuration can only be achieved, when the equilibrium equations in all nodes are
satisfied under the uniform prestress. It means that all the forces with equal values converging
in a given node have to get into a specific position of balance in three directions. Generally it is
hard to verify if such configuration is possible before the calculations. When the convergence
of the nIFDM solution is not achieved, it usually means that the optimal configuration is not
possible for given input data.
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As it was shown in this and previous chapters, Force Density Method can be extended by
adding new system of equations which provide different constraints on cable nets. Apart from
the two shown above some authors proposed also different constraints like nodes distance [3],
node coordinates [23], reaction component values [24], elastic properties of prestressed
element [3,23]. Also some modifications were made in order to analyse cable structures with
compression members [25] and bending elements [26]. It means that Force Density Method is
still very elastic and versatile tool for cable structures analyses.

5. Calculation procedure

The aim of this paper is to find configuration of a cable net under self-weight and prestress
which is possibly close to the optimal one. Methods nIFDM and EFDM presented in previous
chapters are employed in proper sequence. Some details concerning verification, accuracy,
convergence and recommended values of initial parameters of the method are presented in [21]
and [22]. Generally, fast convergence is achieved for both nIFDM and EFDM, when starting
configuration is sufficiently close to the solution.

In general, configuration of a cable net under self-weight differs from the optimal one,
loaded only with the uniform prestress. In order to find a good agreement between them it
is crucial to assume proper initial lengths of elastic cable elements. For this purpose initial
(unstrained) element lengths Ly for EFDM analysis are calculated on the basis of the lengths
from the optimal configuration L. Elastic elongation is subtracted from the optimal lengths
Lopy as it is shown below:

N Lop:

(51) L() = Lopt - H

As it can be seen in the Eq. (5.1), the assumed cross-section area and Young modulus of
material are necessary to perform the analysis of the structure under self-weight with the use
of EFDM.

Different options of calculations presented in this paper are employed consecutively in the
procedure listed below:

(0. find initial configuration — FDM));

1. assume prestress forces in all or in the part of elements;

. find configuration in uniform prestress state — optimisation with nlIFDM;

. collect optimal element lengths Loy;

. calculate unstrained element lengths Ly (Eq. (5.1));

. assume elements cross-sections satisfying ultimate limit state for cable elements;
. find final configuration under self-weight — EFDM.

Step O is necessary when optimal solution is not converging. Usually FDM analysis
with force density values from 0.1 to 1 kN/m in each cable is sufficient to get the auxiliary
configuration for the optimal one. As a result of the calculation procedure the real geometry
and force distribution in the cable net under self-weight and prestress is obtained. This solution
is also close to the optimal one and can be transferred as the input to static and dynamic
analyses under live loads.

AN N AW
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Calculation examples presented in Chapter 6 are executed in program UC-Form developed
by the author in Scilab package. More details regarding the algorithm and instruction manual
are present in [21]. Input data due to geometry and material can be imported to UC-Form
from the MS Excel auxiliary file, which is a very convenient way of exchanging data between
different programs. Calculation results are automatically presented in an interactive window
containing current view of a structure and some switches to change the visibility of particular
elements. Additionally the solution can be displayed in numerical form in Scilab console, so it
is possible to use obtained data in other programs.

It should be emphasized, that not always the optimal form of a cable net can be found, because
of geometrical reasons. Moreover, sometimes the optimal configuration is not satisfactory from
the functional or esthetical point of view. In some cases only partial optimisation is possible.
Then, it is crucial to identify the groups of elements in which the uniform prestress can be
achieved. Usually a basic FDM analysis is a good source of information about initial tensile
forces distribution and can help to choose the areas of similar force values and cross-sections
used in following stages of design. Table 1 summarizes the essential properties of spiral strand
wire ropes used in the calculation examples in Chapter 6.

Table 1. Properties of spiral strand wire ropes

Type | ¢ [mm] | Frq [kN]| EA [kN] | p [kg/m]
SS16 16 154 27000 1.26
SS30 30 524 95000 4.29
SS115 115 7440 1180000 | 63.70

6. Calculation examples

6.1. Closed cable net covering circular area

First structure analysed in this paper is a closed cable net stretched on the circular ring
with variable ordinates and cables arranged orthogonally. Tensile force value of 100 kN is
assumed in all the elements in order to find the optimal configuration which is shown in Fig. 3.
The orange line from node 222 to 223 is a symmetry axis which profile is used to compare
different solutions.

Next, obtained element lengths Loy were used to calculate the initial ones for the analysis
under self-weight Ly according to Eq. (5.1). A spiral strand wire rope SS16 was chosen for all
the elements (Table 1). Figure 4 shows the comparison of central axis profiles of optimal and
under self-weight configurations and it can be observed that they are nearly the same.

Figure 5 shows the comparison of force values distribution and Table 2 summarizes the
extreme values of forces and force densities in both configurations. These values are very
close and the sums of lengths are identical. Obtained configuration under self-weight can be
regarded as optimal.
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Fig. 3. Optimal configuration of the closed cable net with symmetry axis shown
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Fig. 5. Tensile force distribution in: a) optimal; b) under self-weight configuration of the closed net

Table 2. Comparison of optimal and under self-weight versions of the closed cable net

Version | Nyin [KN] | Nmax [KN] | gmin [KN/m] | gmax [kKN/m] | £L; [m]
Optimal 100.00 100.00 23.61 49.09 1028.40
Self-weight 99.49 101.08 23.53 49.59 1028.40
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6.2. Open cable net covering circular area

In the next example an open cable net is analysed. It was developed from the previous
one by removing some of the supports and adding edge cables instead. In this case edge
cables should have higher prestress than inner cables in order to achieve possibly large area
covered by the roof. This means that uniform prestress in the whole cable net cannot be
obtained. Additionally, due to the particular cable net layout, there is no optimal solution, even
if different force values are assumed for edge and inner cables (e.g. 1000 and 100 kN). In such
case equilibrium configuration does not exist. Therefore only force values in inner cables are
assumed equal to 100 kN. Edge cables are excluded from optimisation. In order to find the
most advantageous geometry of the cable net three different versions of edge cables prestress
are compared. In the first one shown in Fig. 6a initial force density values are the same in
the whole cable net and equal to 20 kN/m. Second optimal version is shown in Fig. 6b and
was obtained with initial force density values equal to 200 kN/m in edge cables and 20 kN/m
in inner cables. In the last version initial force densities in the edge cables are 2000 kN/m
and 20 kN/m in the inner cables. This optimal version is shown in Fig. 6¢c where the highest
prestress in edge cables and the largest area covered by the net can be observed.
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Fig. 6. Optimal configuration and force distribution of the open cable net: a) initial Ginner = Gedge =
20 kN/m; b) initial ginner = 20 kN/m, gedge = 200 kN/m; c) initial ginner = 20 kN/m, gegge = 2000 kN/m

In this example it is obvious that comparing sums of all element lengths is unreliable
because different prestress in edge cables mean different boundary conditions for the inner
part. However such partially optimised cable net is rational because of the uniform prestress in
all the inner cables.
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Because of the largest area covered and regular inner cables layout the third version is
selected for adding self-weight. Initial lengths for this analysis were calculated due to Eq. (5.1).
The SS16 spiral strand wire rope is presumed for inner cables and SS115 for edge cables
(Table 1). Symmetry axis profiles in all versions are compared in Fig. 7 and are very similar. The
horizontal coordinates differ noticeably because of various levels of prestress in edge cables.

Symmetry axis profile
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Fig. 7. Central axis profiles of three optimal and under self-weight cable nets

Sums of element lengths and extreme values of tensile forces are compared in Table 3. As
it was expected, version under self-weight is very close to the third optimal version, so it can
be regarded as initial configuration for the next analyses.

Table 3. Comparison of optimal and under self-weight versions of the open cable net

Version Nmin inner [KNI | Nmax inner [KN] | Nmin,edge [KN] | Nmax edge [KN] | EL; [m]
Optimal 20/20 100.00 100.00 87.55 412.71 975.40
Optimal 20/200 100.00 100.00 502.54 718.21 993.61

Optimal 20/2000 100.00 100.00 5000.25 6950.86 1008.92
Self-weight 99.35 101.45 5019.81 6994.79 1008.92

6.3. Semiopen pentagonal roof

In the last example the semiopen, pentagonal cable net shown in Fig. 8 is analysed.

12541995
7o 5 2 b
5 R A o gpt 105~ 765K

32

Fig. 8. Initial configuration of the semiopen, pentagonal cable net

There are four edge cables and one edge is fixed. In this case optimisation of the whole
cable net is not possible due to geometrical limitations.
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Two versions of partial optimisation are then performed. In both versions initial force
densities in edge cables are 200 kN/m and in inner cables are 50 kN/m in order to achieve
higher prestress in edge cables. In the first optimal configuration forces in all inner cables
are 100 kN. Forces in edge cables and plan of the roof are shown in Fig. 9a. With the aid of
element lengths from this solution the initial lengths for the analysis under self-weight are
calculated with the use of Eq. (5.1). The SS16 spiral strand wire rope is used for inner cables
and SS30 for edge cables (Table 1). Second optimal configuration is shown in Fig. 9b. Here
only in the edge cables force values of 400 kN are imposed. In this configuration area covered
by the roof is larger, so it seems to be more appropriate due to functional requirements.
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Fig. 9. Optimal configurations of the semiopen cable net due to: a) inner cables; b) edge cables

Figure 10 shows the comparison of two optimal shapes in plan and sideview. In the blue
version only edge cables are optimised, in the green one — only inner cables.
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Fig. 10. Two optimal configurations of the semiopen cable net in: a) plan and b) sideview
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Like in the previous case, the analysis with self-weight was also conducted with the same
cable sections assumed and initial lengths calculated on the basis of optimal ones.

Table 4 summarizes force values in inner and edge cables in optimal and under self-weight
configurations. Comparison shows that they are similar so it means that adding dead load with
initial element lengths obtained from the optimal version does not change the optimal force
distribution significantly.

Table 4. Comparison of optimal and under self-weight versions of the open cable net

Version Nmin,inner [KNI | Nmaxinner [KN] | Nmin,edge [KN] | Nimax edge [KN]
Optimal — inner 100.00 100.00 270.58 586.94
Self-weight — opt. inner 99.79 100.69 271.00 590.43
Optimal — edge 27.83 117.42 400.00 400.00
Self-weight — opt. edge 28.05 117.69 399.22 402.45

7. Conclusions

In this article the form-finding procedure for cable nets derived from the Force Density
Method is proposed. With the use of the classic and extended, nonlinear version of the method
it is possible to find the initial shape of a cable net under self-weight and prestress which is
close to optimal configuration. It can be regarded as very advantageous for further static and
dynamic analyses as self-weight and prestress are the loads present in each design situation in
the structure. Such approach means that the natural state of a cable net is optimal configuration
which is only disturbed by the live loads changing during exploitation. Thanks to use of
catenary element formulation, geometry and tensile force distribution are very close to the
exact solution in contrary to parabolic formulation. In this paper it was proved that minimum
weight configuration can be achieved by enforcing uniform prestress in the whole cable net.
Sometimes it is more beneficial to optimise only a part of a cable net (e.g. in open cable nets)
to achieve better functional and economical features as it was shown in Chapters 6.2 and 6.3.
Maximising area covered by the roof can be obtained by increasing prestress in edge cables. It
leads to greater sum of lengths for the whole cable net but also allows the uniform prestress
and using one cross-section for all the inner cables. Adding self-weight to optimal or partially
optimal cable net always changes the configuration. In order to preserve the optimal one initial
cable lengths can be calculated on the basis of the optimal ones. It was shown in three different
examples that configuration under self-weight and prestress obtained this way is sufficiently
close to the optimal one and therefore can be further treated as a starting point for design
process. Algorithm presented in this paper supplements completely geometrical form-finding
by the Force Density Method with the elastic properties and self-weight of cables. It also
enables finding optimal configurations by imposing uniform force distribution.
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Znajdowanie ksztaltu optymalnych siatek ciggnowych obciazonych
ciezarem wlasnym przy uzyciu metody gestosci sit

Stowa kluczowe: znajdowanie ksztattu, siatka ciggnowa, krzywa taricuchowa, gestos¢ sity

Streszczenie:

W pracy przedstawiono procedure, dzieki ktérej optymalny ksztalt siatki ciggnowej jest wykorzystany
do uzyskania wstepnej konfiguracji pod dziataniem sit sprezenia i cigzaru wlasnego. Ze wzgledu na
nieliniowo$¢ geometryczna siatek ciggnowych ich konfiguracja pod wplywem réznych schematéw
obciazen moze do$¢ znacznie si¢ r6zni¢. Dlatego optymalne projektowanie tego typu konstrukcji zgodnie
z zaleceniem Lewis [ 1] powinno opierac si¢ na stanie poczatkowym, w ktérym dziatajg jedynie obciazenia
obecne we wszystkich kombinacjach obcigzen, czyli sily sprezenia oraz ci¢zar wlasny. Ten stan jest
réwniez wyrézniony w Eurokodzie [18] jako oddzielny przypadek obciazend. W niniejszym artykule
zaproponowano Sciezke postepowania, w ktdérej na poczatku przeprowadza si¢ proces znajdowania
ksztattu konstrukcji, nastepnie znajduje si¢ konfiguracje minimalizujaca ci¢zar wlasny, a na koricu
wprowadza si¢ wlasnosci sprezyste ciggien i ciezar wlasny tak, aby uzyskana geometria byla zblizona
do tej optymalnej. W tym celu wykorzystuje si¢ Metode Gestosci Sit w wersji podstawowej, czyli
liniowej i w wersjach nieliniowych. W artykule zaprezentowano najwazniejsze informacje na temat
Metody Gestosci Sit wedlug Scheka [3]. Jest to jedna z popularniejszych metod znajdowania ksztaltu
poczatkowego siatek ciggnowych. Opiera si¢ na ukladzie réwnan réwnowagi weztéw, ktéry dzieki
wprowadzeniu pojecia gestosci sily jako stosunku sity podtuznej do dlugosci elementu, jest uktadem
réwnai liniowych, z ktérego mozna uzyskaé poszukiwane wspéirzedne weztéw konstrukcji. W tym
celu nalezy narzuci¢ konkretne wartosci gestosci sit w kazdym z elementéw ciggnowych, co powoduje
powstanie nowej konfiguracji konstrukcji. Pokazano réwniez gtéwna ide¢ i podstawowe réwnania
Rozszerzonej Metody Gestosci Sit zaproponowanej przez autorke w pracach [21] i [22]. Dzigki tej wersji
mozliwe jest uwzglednienie cigzaru wlasnego ciegien luznych (przy uzyciu krzywej taiicuchowej) oraz
napietych. Réwnoczesnie dzigki tej metodzie wprowadza si¢ sprezyste wlasnosSci materiatu ciegien,
a zatem z czysto geometrycznego zadania Metody Gestosci Sit przechodzi si¢ do modelu numerycznego
dobrze odwzorowujacego wlasno$ci mechaniczne konstrukcji. W nastgpnej czesci pracy zaproponowano
zadanie optymalizacji polegajace na poszukiwaniu minimalnego ci¢zaru siatki ciggnowej. W przypadku
zalozenia o jednorodno$ci materialu oznacza to poszukiwanie minimalnej objetosci. Pokazano, ze zadanie
to sprowadza si¢ do znajdowania siatki ciggnowej o réwnomiernym rozktadzie sit podtuznych, ktére
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mozna rozwigzac¢ przy uzyciu nieliniowej wersji Metody Gestosci Sit. Przyjmujac uzyskang konfiguracje
konstrukcji jako optymalng, nalezy wykorzysta¢ uzyskane dtugosci poszczegdlnych elementéw do
zdefiniowania dtugosci poczatkowych, czyli przed odksztalceniem sprezystym. Te dlugoSci wraz z
danymi dotyczacymi przyjetego przekroju i materiatu stanowia dane wejsciowe do analizy z cigzarem
wilasnym. Uzyskang w ten sposéb geometri¢ konstrukcji i rozktad sil, a takze zaproponowane wstepnie
przekroje ciegien mozna wykorzystac jako dane wejSciowe do dalszych analiz statycznych i dynamicznych
pod dziataniem pozostatych obcigzen.

W celu sprawdzenia, czy zaproponowana Sciezka postgpowania jest prawidlowa, przeanalizowano trzy
przyktady obliczeniowe. Pierwszym jest siatka zamknieta, rozpigta na okraglym obwodzie o zmiennych
rzednych. Drugim jest analogiczna siatka otwarta, ktéra powstata przez usuniecie niektérych podpér
z siatki zamknietej i wprowadzenie cigegien brzegowych pomiedzy pozostaltymi podporami. Trzeci
przyklad to siatka pétotwarta o rzucie pigciokatnym i podporach na roznych wysoko$ciach. W pierwszym
przyktadzie bez problemu uzyskano konfiguracje optymalna z sitami w ciggnach réwnymi 100 kN. Po
wykorzystaniu tej konfiguracji do znalezienia dtugosci poczatkowych ciegien przeprowadzono analize
uwzgledniajaca ciezar wlasny i wlasnosci sprezyste. Zatozono konkretny typ ciggna i uzyskano geometri¢
z duza doktadnoscia odzwierciedlajaca konfiguracje optymalna. Réwniez rozktad sitjest zblizony do
zalozonego. Analizujac siatke okragta, otwartg okazato si¢, ze nie ma mozliwosci uzyskania optymalnej
konfiguracji calej siatki. Uzyskano zatem trzy wersje siatki czeSciowo optymalnej, gdzie réwnomierny
rozklad sit uzyskano jedynie w ciggnach wewnetrznych, a ciggna brzegowe zostaty napiete w réznym
stopniu. Do dalszej analizy wybrano wersjg, ktéra przekrywa najwieksza powierzchnie, czyli wersje z
maksymalnymi sitami naciagu w ciggnach brzegowych. Ponownie uzyskano bardzo zblizone wartosci
wsp6lrzednych oraz sit w konfiguracji optymalnej i obciazonej cigzarem wtasnym. W ostatnim przyktadzie
réwniez nie uzyskano pelnej konfiguracji optymalnej. Przeprowadzono oddzielnie optymalizacje ze
wzgledu na ciggna wewnetrzne oraz zewngtrzne i poréwnano uzyskane ksztatty konstrukcji. Wykorzystano
wyniki obu wersji do przylozenia ci¢zaru wlasnego i wlasnosci sprezystych. Rozklady sit w uzyskanych
konfiguracjach byly bardzo zblizone do wersji optymalnych. Z przedstawionych przyktadéw wynika,
ze mozliwe jest uzyskanie konfiguracji siatki ciggnowej z uwzglednieniem wlasnosci mechanicznych
oraz ciezaru wlasnego ciegien, ktdra jest zblizona do konfiguracji optymalnej, czyli o minimalnym
ciezarze wlasnym. W zaleznosci od ksztattu siatki i wzajemnego ulozenia ciggien optymalizacja moze by¢
wykonana dla catego uktadu lub tylko dla wybranych fragmentéw, w ktérych panuja zblizone wartosci
sit naciggu. Tak uzyskana konfiguracja wstepna pod dziataniem poczatkowych obciazen jest dobrym
punktem wyjScia do dalszych analiz statycznych i dynamicznych. Zaktada sig¢, Ze rzeczywiste sytuacje
obcigzeniowe beda tylko czasowo wytracaly konstrukcje z konfiguracji optymalnej, aby powrécié do niej
w sytuacjach obciazenia poczatkowego.
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