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Automatic classification of underground utilities
in Urban Areas: A novel method combining ground

penetrating radar and image processing

Klaudia Pasternak1, Anna Fryśkowska-Skibniewska2

Abstract: Precise determination of the location of underground utility networks is crucial in the field of
civil engineering for: the planning and management of space with densely urbanized areas, infrastructure
modernization, during construction and building renovations. In this way, damage to underground utilities
can be avoided, damage risks to neighbouring buildings can be minimized, and human and material
losses can be prevented. It is important to determine not only the location but also the type of underground
utility network. Information about location and network types improves the process of land use design
and supports the sustainable development of urban areas, especially in the context of construction works
in build-up areas and areas planned for development. The authors were inspired to conduct research on
this subject by the development of a methodology for classifying network types based on images obtained
in a non-invasive way using a Leica DS2000 ground penetrating radar. The authors have proposed a new
classification algorithm based on the geometrical properties of hyperboles that represent underground
utility networks. Another aim of the research was to automate the classification process, which may
support the user in selecting the type of network in images that are sometimes highly noise-laden.

The developed algorithm shortens the time required for image interpretation and the selection of
underground objects, which is particularly important for inexperienced operators. The classification
results revealed that the average effectiveness of the classification of network types ranged from 42% to
70%, depending on the type of infrastructure.
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1. Introduction

Research on improving the accuracy and reliability of the non-invasive detection of
underground utility (UUs) networks along with their classification based on B-scan images
is the key aspect in the field of civil engineering from the point of view of the safety of
the conducted infrastructure modernization works that are related to the implementation
of BIM technology and 3D cadastre. Non-invasive detection methods make it possible to
detect foundations and structures, not visible on building plans, that pose a potential threat
to human safety. Accurate information about the location of UUs networks is important in
the context of building planning to avoid excavation in the wrong places [1, 2]. Acquiring
information on the positions and routes of underground cables and the pipelines has become
a necessity in the design and execution processes of all kinds of constructions [3–6].

Automation of the process of detection and extraction of hyperbolas that represent
underground objects has been discussed in numerous publications [7–9]. Manual analysis of
large amounts of data from ground penetrating radar (GPR) is inefficient and time-consuming.
Especially that data received from GPR are images usually named radargrams. Therefore,
it is important to develop a fast and accurate method for the automated classification
of underground objects. The classification of various types of underground objects in
B-scan images is currently limited to mines [10], cavities [11], hatches [12], and soil
and underground pipes [13]. The available publications classify underground objects as
pipes, without distinguishing between different types of UUs networks. Classification of
pipes on echograms can be done by automatic method – using artificial intelligence or by
manual (visual) method. In the latter case, it is necessary to analyze the acquired image and
determine features representing the underground object, i.e. change in contrast, specific
geometric shape. Depending on the type of pipe sought, different features can be used for
identification.

In the B-scan images, buried underground objects are represented in the form of
hyperbolic patterns. This shape was caused by the reflection of the electromagnetic wave
previously sent by the instrument from the object, as recorded by the ground penetrating
radar. There are available algorithms that enable the extraction of the selected geometric
properties of hyperbolas, that is, the depth, position, and radius of an underground object and
its 3D representation [14–17]. However, the use of deep learning in extracting hyperbolas
from radargrams has proven to be an effective method for extracting information from
radargrams and recognizing hyperbolas using a large dataset of labeled images [18–23].
The results of hyperbola detection and extraction (obtained from deep learning algorithms)
are promising, but they have the disadvantage of having to acquire large data sets to be
included in the training network. Nowadays, existing algorithms only allow the extraction
and detection of underground networks without classifying them according to their type.

Once hyperbolas are extracted from a radargram, they can be used for a variety of
purposes. For example, they can be used to detect underground objects, to map the subsurface
of an area and to study soil properties. However, images obtained from ground penetrating
radars are often highly noise owing to the heterogeneity of the subsoil medium, mutual wave
interactions, and hardware module noise, which reduces the efficiency of the extraction
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of hyperbolas representing underground objects. The main aim of the filtration of GPR
images is to enhance interpretation efficiency and precisely define the position of the
objects [24–31]. Radargrams processed in this way are prepared for use in other engineering
topics, i.e. tunnel deformation investigation [32] or assessment of bridge condition and
location of reinforcement using integrated TLS and GPR data [33].

1.1. Proposed method

Summarizing the above related works, our main task was to classify the hyperbolas
according to the types of underground utility networks (water supply network “w”, sewage
network “s”, heating network “h”, power supply “p”, telecommunications “t”, and gas
networks “g”) in images obtained from ground penetrating radars and to automate this
process with the use of MATLAB software. In this study, to automatically distinguish utility
types effectively, the Ring-Projection method was used to measure signal complexity and
irregularity. Then, an approach was proposed that integrates the approach to the classification
of types of utility networks based on image and one-dimensional data.

The authors proposed several algorithms to automate the processing of images obtained
using the GPR method: algorithm for automated filtration and detection of hyperbolas in
radargrams, algorithm for the extraction of hyperbolas and their halves, algorithm for the
extraction of geometric properties of hyperbolas and the reduction of 2D data to 1D data
and algorithm for automated classification of hyperbolas according to the types of ground
utility networks.

2. Methodology

In this study, using MATLAB software, combined with the proposed digital image
processing algorithm, radargrams were processed by filtering, binarization, and the proposed
complex radiometric (based on pixel values and contrast) and geometric (based on the shape
and size of objects) features of the hyperbolas algorithm to detect, extract, and classify
hyperbolas representing different types of utilities. In general, the proposed method of
classifying GPR hyperbolas into different utility types is presented in subsection 2.3.3.
The proposed methodology, which is based on the radiometric and geometric information
contained in B-scan images. The B-scan transformed to the form of a binary image contains
important information that is both radiometric and geometric. The proposed method was
based on these properties. However, it should be noted that some radargrams that was also
mentioned in this study was impossible to use because of the very poor recording of the
image, which made extraction and classification extremely difficult (due to noise, soil layers,
roots of trees, and other interfering objects). Therefore, this study focuses primarily on the
utility that can be detected.
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2.1. Data acquisition

The object classification process is preceded by obtaining radargrams, their filtration,
and the detection of objects that represent UUs networks. Radargrams were acquired in two
research areas: on the campus of the Military University of Technology in Warsaw at 10
different locations and in the city of Otwock at six different locations, using a Leica DS2000
GPR, as presented in Fig. 1.

Fig. 1. Location map of the study area showing: (a) the location of measurement areas in the
topographic map, (b) Location 1 and (c) Location 2 (Map source: OpenStreetMap, Geoportal)

The measurement areas are marked with yellow rectangles in Fig. 1. In each of these
areas, minimum 3 measurement routes were obtained. Radargrams were acquired using
GNSS receiver integrated with a ground penetrating radar, which has a positioning accuracy
of approximately 1 m. The study used 150 images of true hyperbolas showing all types of
UUs networks (about 20–30 images of each type of network). However, it is worth noting
that 150 is the number of resultant images of hyperbolas already obtained after the stage
of grouping hyperbolas according to their completeness into three groups (Group A, B,
and C – described in subchapter 2.3 – Classification). Initially, after the pre-processing of
images stage, about 300 images of hyperbolas and other objects detected in the image were
obtained.
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2.2. Pre-processing and processing of images

Pre-processing images is an obligatory stage for acquiring useful GPR radargrams.
Radargrams obtained in the uNext software were pre-processed using GRED HD software.
This process consists of the stages: time zero correction, bandpass frequency filter, gain
filter and background removal.

The algorithm for the detection and extraction of hyperbolas is the first stage of processing
and is based on the radiometric properties of the images and objects. This algorithm, which
was first proposed in [34], was partly modified for the purposes of hyperbola classification.
The new approach is shown in Fig. 2.

Fig. 2. Scheme of the preliminary research steps (Source: own elaboration)

The stage of edge detection using the Sobel filter [34] was replaced by binarization of
the image using the Sauvola method (Step 1 – Binarization). The aim of this action was to
preserve not only the edges of the objects but also their overall shape, which is important for
the analysis of the geometric properties of the hyperbolas that are subjected to classification.
The main steps of the proposed method are as follows:

Step 1 – Binarization: The pre-processed image was converted to a gray-scale image by
filtering with a mask that removed the background of the image. The second stage consists
of the binarization of the image using the Sauvola method [35–37].

Steps 2-4 –Geometric conditions:The proposedmethod for the detection of hyperbolas
is based on the extraction of hyperbolas that meet the predefined geometric conditions: (1st
condition) the size of the object (CS) is larger than 45 px, (2st condition) the curvature of
the object (CC) falls within the range of <0.016; 0.160>, (3st condition) the depth of the
object (CD) is larger than 13 px. Entering these conditions means that all hyperbolas not
meeting these conditions will be removed from the image. These values were defined based
on all the measurement samples (i.e., 20 images).

The resulting binary images obtained as a result of the application of the algorithm
(for the detection and extraction of hyperbolas) contained both true and false objects. The
term true objects refers to hyperbolas that reliably reflect the position of UUs network
according to the National Geodetic and Cartographic Resource (NGCiR). On the other hand,
false objects are objects that are detected as true objects but which, in fact, are not ground
utility networks. The presence of false objects in the final processed image results from the
occurrence of various interfering objects. In comparison to the image in step 1 (Fig. 2), it was
possible to eliminate approximately 70–90% of the false objects presented in step 4 (Fig. 2).
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2.3. Classification

The algorithm for the automated classification of hyperbolas according to the type of
ground utility network is mainly based on the determination of the value of their geometric
properties. Automated determination of these values requires extracting the hyperbolas and
writing them into individual matrices. The resulting grey-scale images contain hyperbolas
of various shapes and degrees of completeness. The authors proposed dividing hyperbolas
into three groups according to the degree of completeness:

– complete objects (with a vertex and both arms of a hyperbola) – Group A,
– objects that are approximately complete (with the vertex and left or right arm of the
hyperbola) – Group B,

– incomplete objects (with only one arm or vertex of the hyperbola) – Group C.
Only hyperbolas from groups A and B were selected for the analysis of the geometric
properties. Hyperbolas from group C should be rejected and should not be considered in
the classification process because this group consists of incomplete objects that do not have
a hyperbolic shape. Fig. 3 shows the true hyperbolas representing all types of UUs networks
analysed.

Fig. 3. Grey-scale images of hyperbolas representing various types of utility networks
(Source: own elaboration)

The analysis in Fig. 3 reveals that the visual classification of ground utility network types
requires analytical experience. Therefore, in the following steps, the geometric properties of
these types are presented, as well as the possibility of their dimensioning for semi-automated
classification of utility network types.

2.3.1. Extraction of hyperbolas

In order to reliably compare the geometric properties of the hyperbolas in Group A
and B, the images of the halves of the hyperbolas were analyzed (due to the symmetry of
the hyperbolas and their degree of completeness). For hyperbolas the coordinates of the
borderline points of each object were determined (marked with red circles in Fig. 4) and
defined the vertex (marked with a green circle in Fig. 4). This will be the basis for automated
cutting out of two images containing halves of the hyperbola.
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Fig. 4. Flowchart of the algorithm for the automated extraction of hyperbolas and cutting their halves
out of the resultant binary image (Source: own elaboration)

For hyperbolas belonging to Group A, two images representing both halves were saved.
In group B, the user selects which half of the hyperbola should be saved.

2.3.2. Geometric features of hyperbolas. proposed parameters and coefficient

The geometric features of the hyperbolas represent their geometric properties in the image.
The process of measuring the hyperbola enables to obtain the numerical characteristics of
the analyzed object. In further steps, we propose to determine the value of the following
properties of the hyperbolas: curvature (CC), span (R) and height (H), size (CS), depth (CD),
signal length (LS), signal height (HS). The determined values of the geometric properties
of the hyperbolas were the basis for calculating the f parameter, which is the ratio of the
ratio of the product of the power of the span (R) to sixteen times the height of the hyperbola
(H), the K coefficient, which is the ratio of the height (H) to the span (R) of the hyperbola,
and ODL is the distance between the vertex and the end of the arm of the hyperbola. These
parameters were calculated using Eqs. (2.1), (2.2) and (2.3).

f =
2R2

16H
(2.1)
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K =
H
R

(2.2)

ODL =
√

H2 + R2(2.3)

where: H – the hyperbola height (HL – for the left half of the hyperbola, HR – for the right
half of the hyperbola) [px], R – the hyperbola span (RL – for the left half of the hyperbola,
RR – for the right half of the hyperbola) [px].

For hyperbolas belonging to group A, the values of height and span were calculated for
both the left (RL , HL) and right (RR, HR) halves. The values were averaged to calculate the
K . For hyperbolas from group B, these parameters were calculated for only one-half. All
the properties discussed so far were determined based on the image of the whole hyperbola
or one of its halves. However, the length (LS) and height (HS) of the signal were calculated
based on one-dimensional data that represented half of the hyperbolas from groups A and
B. These data were obtained by reducing the image (2D) of the hyperbola to the signal
(1D) using the Ring-Projection-Wavelet-Fractal method, which is discussed in subchapter
2.3.2.1.

2.3.2.1. The Ring-Projection method
In this method, the first step to reduce the dimension from 2D to 1D is to determine the

center of mass (MO) for each object using a density function of the mass distribution on
the plane. On this basis, Cartesian coordinates were converted into a polar system (from
x–y space to γ − θ space) (5) [38]. Then, rings with radii (r + ∆r) centered at point MO

were created. In the last step of the algorithm, the number of pixels in the range of the given
ring is counted for each value of radius r. Fig. 5 shows a diagram of the reduction of the
image dimension to one-dimensional data on the example of a selected hyperbola, which is
a power supply network.

Fig. 5. Scheme of the reduction of image dimension to signal: (a) binary image of a hyperbola, (b)
centroid of the mass distribution on the x–y plane with rings of a given radius, and (c) ring projection

of hyperbola image (Source: own elaboration based on [37, 38])

This method was applied to avoid considering the disturbances in the extraction of the
LS and HS parameters of true hyperbolas considering the potential reduction or expansion
of the shapes of complete and nearly complete hyperbolas. In this way, these parameters are
resistant to varying hyperbola lengths or curvatures.
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2.3.3. Classification method

The processed images, extracted hyperbolas and their halves were the basis for developing
a method of classifying objects according to the types of ground utility networks based on
the extraction of their geometric properties. The values of the CC , CD parameters were
obtained from images of hyperbolas, whereas the values of the parameters: R, H, CS , HS , LS

were obtained from images of their halves. The proposed method allows for the classification
of hyperbolas based on the calculated values of the parameters and coefficients ( f , K , ODL).
The stages of manual work are marked with red dotted lines (Fig. 6).

The correctness of the classification of utility networks was verified based on reference
data and is described in the Results section. Twelve main conditions for the classification of
hyperbolas were introduced, and their ranges were determined heuristically based on the
test hyperbolas.

1. The power supply network was classified as “p”, if: the value of the CD parameter
falls into the range� 24; 44 � [px].

2. The water supply network was classified as “w” if: the value of the CS parameter falls
into the range� 120; 190 � [px] or the value of the ODL parameter <53 [px] or the
value of the CS ≥ 60 px and of LS ≥ 19 px or the value of the f parameter falls into
the range� 5.1; 6.0 � ∧ � 6.4; 8.4 �.

3. The sewage network was classified as “s” if: the value of the CC parameter falls into
the range � 0.020; 0.021 � [px] or the ODL parameter falls into the range <36;
51>[px] or the value of the CS parameter falls into the range� 115; 200 � [px].

4. The telecommunications network was classified as “t” if: the value of the CS

parameter falls into the range < 24; 35 > [px] or the ODL parameter falls into the
range� 15; 17 � [px] and the value of CD ≤ 19 px.

5. The heating network was classified as “h” if: the value of CS > 60 px and LS < 19 px.
These conditions allow the classification of the following types of networks: p, t, s, h

and w. As a result of the classification of hyperbolas, the power supply and heating networks
may be classified (i.e. meet the adequately defined number of conditions): once, the water
supply network four times at the maximum, and the sewage network three times. The results
of the preliminary classification can be analyzed for several variants (cases):

Case 1. The result of the classification is a specific type of network, for example w, s, h,
t, or p. (one condition has been met).

Case 2. The result of the classification is that more than one type of network, which
means that more than one condition has been met. If at least two results indicate one type
of network, then the hyperbola should be classified as the dominant type of network, for
example: “ssw” (3 conditions met)→ “s”, “ssww” (4 conditions met)→ “sw”, “ppt” (3
conditions met)→ “p” and “hhww” (4 conditions met)→ “hw”.

Thus, the final result in Case 2 may be a single (e.g. “w”, “s”, “h”, “t” or “p”) or double
network (e.g. “sw”, “hw” or “pt”).

Case 2.1. If, in Case 2, the result is “pt” then additional verification should be conducted:
The power supply network was classified as “p”, if:
– (single hyperbola), the value of the CD parameter fell into the range < 24; 34 > and
the value of the CS parameter fell into the range < 24; 30 >,
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Fig. 6. Schematic diagram of the classification algorithm of hyperbolas (Source: own elaboration)

– (double hyperbola), the value of the CS parameter fell into the range < 24; 34 > and
the value of the CD parameter fell into the range < 24; 34 > for one object and in the
range < 34; 44 > for the second object.

The telecommunications network was classified as “t” if:
– (single hyperbola), the value of the CD parameter fell into the range < 34; 44 > and
the value of the CS parameter fell into the range < 24; 30 >.
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The additional verification presented above allowed us to partly separate the single “p”
or “t” networks from the double “pt” results.

Case 2.2. If, in Case 2.1, the obtained result is still ”pt” or other instances of double
network (“sw”, “hw” or “sh”), the additional conditions presented below should be applied:

– The power supply network should be classified as “p” if f < 5.0 ∧ CS1 > 56 px and
HS ≥ 10,

– The telecommunications network should be classified as “t” if f < 5.0∧CS1 ≤ 56 px
and HS < 10,

– The heating network should be classified as “h” if f ≤ 3.6 ∧ CS1 > 50 px and
H/R > 0.8

– The water supply network should be classified as “w” if f > 5.0 ∧ CS1 > 50 px and
H/R > 0.8,

– The sewage network should be classified as “s” if f < 5.0 ∧ CS1 < 50 px and
H/R < 0.8.

The final result of the classification should be one or, at maximum, two networks. The
next stage of classification consisted of assigning the given networks to three groups. The
given hyperbola is classified into one of three groups based on the physical properties of the
analyzed objects, that is, diameter, thickness, depth at which the network is situated, and
curvature of the hyperbola. The first group (Group 1) includes networks that are in the form
of underground cables and, at the same time, are located at a more shallow depth than those
from the second group (Group 2), which are underground pipes and contain liquid materials
inside. These networks were characterized by a similar range of diameters. Finally, the third
group (Group 3) includes only one network with the properties of both the first and second
groups. The networks were assigned to the defined groups as follows:

– Group 1: power supply (“p”) and telecommunication (“t”) networks,
– Group 2: water supply (“w”), heating (“h”) and sewage (“s”) networks,
– Group 3: gas network (“g”).
Based on an analysis of 150 images of hyperbolas, it was found that the gas network is

the only utility network that does not have the characteristic properties specified above. It
was classified, if the result of the classification were two networks that belonged to different
groups (1–3), e.g. “pw” or “ph” due to the presence of the characteristic features of networks
from groups 1 and 2.

3. Results and quality analysis

This section presents the results of the classification of hyperbolas according to the types
of ground utility networks along with an assessment of the quality of this classification.
The obtained classification results were verified based on reference data obtained from the
National Geodetic and Cartographic Resource (NGCiR). Fig. 7 presents the classification
results considering the types of networks in the given class (Fig. 7a) and the networks
classified as the given type in other classes (Fig. 7b).
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Fig. 7. The results of the classification of hyperbolas (a) by network types in a given class, (b) classified
as a given type in other classes (Source: own elaboration)

The results of the classification of the hyperbola data enabled the assignment of all
classified hyperbolas to network groups (I–III). The effectiveness of the assignment to
the given group – Rg, was calculated, and the results of the average effectiveness of the
classification are presented in Table 1. The overall average effectiveness of the classification
of hyperbolas according to the network groups (I–III) was 77%.

Table 1. The effectiveness of the classification of hyperbolas according to network groups (I–III)

Group of networks I II III

Rg [%] 82 86 62

The result of the classification may be one (case 1) or two networks (case 2) belonging
to the same group of networks (I–III). The user who employs the proposed algorithm for the
automated classification of network types will receive the final result of classification of the
given hyperbola in the form of the effectiveness of classification RC1 expressed in the form
of a percentage (Eq. 3.1). This effectiveness considers the effectiveness of classification of
the given type of network Rs and the average effectiveness of assigning the hyperbola to the
given group (I–III).

(3.1) RC1 =
Rs + Rg

2
where: Rs – the effectiveness of classification of the given type of network, Rg – the
effectiveness of the assignment to the given group (I–III), RC1 – final effectiveness of
classification considering the effectiveness of: the assignment to the given group (Rg) and
of classification of the given type of network (Rs).

The classification result Rs may take the values 0, 33, 50%, or 100%, depending on
the number and type of networks assigned to the given hyperbola. In the first case (if the
classification result is: “p”, “t”, “g”, “h”, “w” or “s”), the effectiveness of classification
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of the given type of network may be either 0 or 100%. In the second case, however (if
the classification result is: “pt”, “sh”, “sw” or “wh”) all networks are characterized by
a 50% classification effectiveness. Table 2 presents the average results of the effectiveness
of the classification of hyperbolas according to ground utility network types – Rs and the
effectiveness of this classification, considering the effectiveness of the classification of the
given hyperbolas to groups (I–III) – Rsg.

Table 2. Average results of the efficiency of the classification of hyperbolas according to types of
ground utility networks

Classification type

Result of the classification of
hyperbolas according to types of

utility networks

p w h s g t

Rs[%] 60 56 30 38 46 55

Rsg [%] 63 70 53 49 42 54

As a result of the application of the proposed object classification method, not all
hyperbolas representing ground utility networks were classified. Some of these did not meet
any of the proposed conditions. Table 3 presents the percentage of hyperbolas that were not
classified according to the types of networks – (Ns).

Table 3. Results for unclassified hyperbolas by type of network – Ns

Type of network p w h s g t

Ns [%] 3 24 33 29 25 14

Table 4 presents the percentage of hyperbolas that were not classified according to their
group (I–III) – Nsg.

Table 4. Percentage of hyperbolas that were not classified according to groups (I–III) – Nsg

Group of networks I II III

Nsg [%] 9 29 25

The binary images obtained as a result of the image-processing stage contain images
of both true and false hyperbolas. The effectiveness of detecting these hyperbolas was
tested on 10 binary images. True objects accounted, on average, for approximately 60%,
and false objects for approximately 40% of all objects detected in the images. The false
objects identified in the images also participated in the process of classifying the ground
utility network types. On an average, half of these false objects were classified as a type of
network. The process of classifying false objects was tested using ten images. Among them,
the minimum number of classified false objects was 27% and the maximum was 75%.
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3.1. Classification quality

Accuracy, Recall, Precision and F-measure were used to evaluate the classification
performance. To calculate these metrics, the values of the True Positive (TP), False Negative
(FN), False Positive (FP), and True Negative (TN) parameters should be defined for each
type of network based on the reference data and the results obtained in the classification of
hyperbolas. Based on the defined confusion matrices for each type of network, the results of
the classification of hyperbolas were eva luated by determining the values of the following
parameters: Recall, Precision, F-measure, and Accuracy [39, 40] for each type of network
(Table 5).

Table 5. Calculated metrics: Recall, Precision, F-measure and Accuracy, for all types of UUs networks

Type of network p w h s g t

Recall 0.7097 0.7429 0.5714 0.4286 0.4167 0.6400

Precision 0.7586 0.6341 0.3333 0.5294 0.8333 0.7273

F – measure 0.7333 0.6842 0.4211 0.4737 0.5556 0.6809

Accuracy 0.8416 0.7818 0.7944 0.8095 0.9140 0.8500

If a high value of the Recall parameter and a low value of Precision are obtained, one may
conclude that the model classifies most positive hyperbolas correctly, but, at the same time,
brings many false positive results, i.e. classifies many negative hyperbolas as positive ones.
The described case refers to the Recall and Precision parameters obtaine d for hyperbolas
belonging to the heating network. The highest classification (Accuracy) was achieved for
the classification of hyperbolas belonging to the gas network (0.9140), telecommunications
network (0.8500), and power supply network (0.8416). The highest values of the calculated
metrics (Recall, Precision, F-measure and Accuracy) for the analyzed types of networks
were achieved for power supply, telecommunications, and water supply networks.

3.2. Effectiveness and Quality factor (FEQ)

Considering the results of the assessment of the accuracy of the classification of types
of hyperbolas, the authors propose to int roduce a coefficient to evaluate the classification
(the Effectiveness and Quality factor), which will determine the effectiveness by analyzing
various instances of results for each type of network (Eqs. 3.2–3.7). For example, the power
supply network in our results occurred in cases: “p” and “pt”. Due to that, FEQ for the
power supply network was calculated based on the weighted average, taking into account
the average effectiveness of classification of the power supply network for cases “p” and
“pt” and the number of occurring cases for “p” and “pt”. This factor considers only the
classification results obtained for true hyperbolas.

FEQp,pt =
np · Rsgp + npt · Rsgpt

np + npt
� 78%(3.2)
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FEQt,pt =
nt · Rsgt + npt · Rsgpt

nt + npt
� 78%(3.3)

FEQw,wh,sw
=

nw · Rsgw + nwh · Rsgwh
+ nsw · Rsgsw

nw + nwh + nsw
� 72%(3.4)

FEQh,wh,sh
=

nh · Rsgw + nwh · Rsgwh
+ nsh · Rsgsh

nh + nwh + nsh
� 59%(3.5)

FEQs,sw,sh
=

ns · Rsgs + nsw · Rsgsw + nsh · Rsgsh

ns + nsw + nsh
� 72%(3.6)

FEQg =
ng · Rsgg

ng
� 81%(3.7)

where: ni – is the number of occurrences of the given case, where i = p, pt, t, w, wh, sw, h,
sh, g, Rsgi – is the average effectiveness of the network classification for the occurrence of
the given instance i.

The proposed methodology was implemented in MATLAB software, which enables the
display of individual stages of the work, and thus the qualitative analysis of the classification.
As a result of the application of the method, the analyst receives information about the
extracted hyperbolas, their classification, and the evaluation of the quality of the classification
in the form of: types of the classified ground utility networks, average effectiveness of
classification of the given type of network that considers the effectiveness of assigning the
hyperbola to the given group (I–III) – Rsg and FEQ. Fig. 8 presents the interface of the
developed algorithm, as seen by the user. The data that will be displayed to the user as
a result of the operation of the algorithm are RC1 and FEQ.

Fig. 8. Interface of the algorithm for the classification of network types as seen by the user (Source:
own elaboration)

The proposed algorithm for automated classification of hyperbolas was tested on
12 complete measurement routes, from which approximately 150 images of hyperbolas
representing ground utility networks were extracted.
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4. Conclusions, limitations and future works

The subject literature review revealed several problems concerning the automated
processing of GPR data for extracting specific information. The two major knowledge
gaps are the automated classification of UUs network types and a clear assessment of the
quality of such classifications. This motivated us to develop the proposed approach. The
algorithm for classifying UUs networks operates in a semi-automatic mode. As a result of
the operation of the algorithm, the user receives information about the type of classified
UUs network, the average effectiveness of classification of the type of network considering
the classification of network groups, the overall accuracy of classification, the FEQ factor, as
well as the commission and omission errors. These data improve the classification process
and support operators, especially inexperienced ones, in making decisions regarding the
type of ground utility network.

The developed methodology allows the classification of each network type. The highest
classification effectiveness Rs (60%) was noted for the power supply network, whereas the
lowest effectiveness (30%) was achieved for the heating network. However, considering the
assignment of the given hyperbola to a group of networks (I–III), the effectiveness of the
classification Rsg increased significantly, ranging from 42% (for the classification of the
gas network) to 70% (for the water supply network). Based on the classification results, the
authors proposed introducing a coefficient of the quality of classification (FEQ). This factor
was introduced because of the occurrence of different instances of network classification
in the final results. The highest value of the factor was achieved for the classification of
the gas network (81%), whereas the lowest value (59%) was noted for the heating network.
This value (FEQh,wh,sh) was influenced by the co-existence of the target network type with
another type of network.

Compared to conventional and existing methods, the degree of automation of the
proposed method is significantly higher, which enables the use of the original images
obtained from GPR as input data with very little manual intervention. Moreover, the
proposed algorithm for the extraction of hyperbolas of various shapes and degrees of
completeness makes it possible to analyze a significantly higher number of hyperbolas, and
is resistant to the quality of images, which varies depending on the conditions of obtaining
data. The entire process is highly automated, and as such, it saves time and cost associated
with manual analysis and possible corrections. Although the effectiveness of the proposed
methodology has been verified in this study, it still suffers from some limitations, including:
manual vertex extraction and manual verification of completeness. These limitations may
introduce some uncertainty to the classification. According to the authors, these steps can
now be more precisely performed manually by any even inexperienced operator.

The proposed novel method for classifying types of UUs networks from radargrams
greatly automates and significantly speeds up the process of network classification, which is
a major contribution to research in this topic. This is evidenced by the proposed parameters
and conditions (2.2–2.3) based on geometric features, which allowed to characterize and
distinguish the given network types. Further research on this issue will concern both the
issue mentioned above and the limitations of improving the effectiveness of the extraction
of true hyperbolas.
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Automatyczna klasyfikacja podziemnych sieci uzbrojenia terenu na
obszarach zurbanizowanych: nowatorska metoda klasyfikacji

integrująca detekcję GPR i przetwarzanie obrazów

Słowakluczowe: georadar, klasyfikacja typów sieci, podziemne sieci uzbrojenia terenu, pomiary
geodezyjne, obszar zurbanizowany

Streszczenie:

Precyzyjne określenie położenia podziemnych sieci uzbrojenia terenu jest kluczowe w dziedzinie
inżynierii lądowej w zakresie prac modernizacyjnych infrastruktury, podczas budowy i remontów
obiektów oraz przy planowaniu i zarządzaniu przestrzenią o gęstej urbanizacji. Wiele zadań admini-
stracji publicznej takich jak: pozyskiwanie gruntów, zarządzanie własnością i planowanie zależy od
wiarygodności lokalizacji uzbrojenia podziemnego. Pozwala to uniknąć zniszczeń uzbrojenia pod-
ziemnego, zminimalizować ryzyko uszkodzeń sąsiednich budynków oraz zapobiec stratom ludzkim
i materialnym. Ważne jest, aby określić nie tylko lokalizację, ale również rodzaj sieci uzbrojenia
podziemnego. Informacja o lokalizacji i rodzajach sieci usprawnia proces projektowania zagospoda-
rowania terenu i wspiera zrównoważony rozwój obszarów miejskich, zwłaszcza w kontekście prac
budowlanych na terenach zabudowanych i planowanych do zabudowy w dziedzinie inżynierii lądowej.
Motywacją autorów do podjęcia tematu badawczego było opracowanie metodyki klasyfikacji typów
sieci na podstawie bezinwazyjnie pozyskanych obrazów georadarem Leica DS2000. Autorzy zapropo-
nowali nowy algorytm klasyfikacji bazujący na cechach geometrycznych hiperbol reprezentujących
sieci podziemne. Celem pracy była również automatyzacja procesu klasyfikacji, który może wspomóc
użytkownika w wyborze typu sieci na czasami bardzo zaszumionych obrazach. Echogramy pozyskano
w kilkunastu różnych lokalizacjach w Otwocku i na obszarze Wojskowej Akademii Technicznej
w Warszawie. Opracowany algorytm pozwala na skrócenie czasu interpretacji obrazów i selekcji
obiektów podziemnych, co jest szczególnie istotne dla niedoświadczonych operatorów. Wyniki
klasyfikacji wykazały, że średnia skuteczność klasyfikacji typów sieci waha się w graniach od 42%
do 70% w zależności od rodzaju infrastruktury podziemnej.
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