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1. Introduction
Cable structures are widely used structural systems providing economical and visually

attractive solutions for large span structures like stadiums, sports and concert halls or exhibition
pavilions. Due to the facts that cable elements work only in tension and are made of high
strength steel wire ropes such structures obtain high cross-section efficiency and low self-
weight, especially in the case of large spans [7].

On the other hand there are also some disadvantages, especially associated with design
process of cable structures. These appear mainly due to geometrically nonlinear behaviour
resulting from large displacements. What is more, cable structures require a preliminary phase
of design which is called form-finding in order to establish an initial geometry and tension
forces. Finite Element Method, which is the most popular method for static and dynamic anal-
ysis, is not efficient for the form-finding process because of the initial geometric instability
of the structure and lack of exact cable elements in many commercial programs. Thus, since
1970s there have been made a great effort to develop some new numerical methods for find-
ing initial shape of tensile structures. The most popular are: Transient Stiffness Method [1],
Dynamic Relaxation Method [5] and Force Density Method [9]. The main rules of these
methods and their comparison was presented by Veenendaal and Block in the paper [11].
The latter method is still being improved and extended, particularly in order to introduce
self-weight of cable elements into analysis. There are also some attempts to use FDM in
optimisation problems, especially for Michell structures (only in tension or only in compres-
sion) [2].

In most cases of correctly designed cable net tension forces in elements should ensure
proper spatial stiffness in order to limit displacements. In such situation self-weight of cables
is negligibly small compared to the live loads and should have small influence on geometry
and forces, see [7]. However, when we deal with long cable elements with large cross-sectional
area, self-weight should be included from the beginning of the design process. Similarly, self-
weight has great importance in structures with slack cables as main structural elements. Such
elements can also appear during erection or after removal of elements as a result of failure
or planned action. Correct distribution of forces resulting from self-weight of slack and taut
elements is crucial to obtain real geometry and forces in the whole structure. Thera are few
papers dealing with this problem. In [4] and [6] authors applied point loads equal to half
of elements self-weight which is correct only in the case of taut elements. However in the
first paper correction in the force density definition accounts for the exact values of reactions.
In the second paper a parabolic (approximate) formulation of cable element is utilized. In
both cases the initial FDM system of equations is supplied by additional equations governing
behaviour of a cable element. In the paper [3] force density is based on the force value
in one end of the element. Further details of method are not clearly presented. Regarding
these drawbacks, there is a need for a universal and accurate method of finding shape and
forces of cable nets consisting of slack and taut elements under self-weight and external nodal
loads.
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2. Materials and methods

2.1. The basics of the Force Density Method

Due to the Schek’s concept of the ForceDensityMethod [9] a cable net is a system consisting
of linear, weightless elements connected by nodes which can be anchored (fixed) or free. Point
loads are applied in chosen free nodes. Topology of a cable net is defined by the incidence
matrix [gCC] in which columns of the first submatrix represent free nodes and the second
submatrix – fixed nodes. Each row of the matrix is connected with one element and indicates
which node is the beginning (number 1) and end (number –1) of the element. For example
a simple net and its incidence matrix is presented in Fig. 1. Three rows of matrix correspond to
three elements, first column represents a free node 1 next three columns represents subsequent
fixed nodes.

Fig. 1. Example of cable net and its incidence matrix

Using the definition of incidence matrix we can write down the formulas for vectors of
element length projections at three axes, where xyz are the coordinate vectors of free nodes and
xyz – of fixed nodes.

(2.1) x∆ = C x + Cx, y∆ = C y + Cy, z∆ = C z + Cz

Themain idea of themethod is to find coordinates of free nodes satisfying equilibrium equations
in each direction presented below:

(2.2)




CTX∆L−1n = px

CTY∆L−1n = py
CTZ∆L−1n = pz

where X∆, Y∆, Z∆ are diagonal matrices of element length projections at x-, y-, and z-axes,
L is a diagonal matrix of element lengths, n is a column vector of element forces and px , py , pz
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are column vectors of x, y and z components of nodal loads. Taking the definition of element
lengths (2.3) into account it can be seen that above equations (2.2) are nonlinear with regard to
free nodes coordinates:

(2.3) L =
(
XT
∆

X
∆
+ YT

∆
Y
∆
+ ZT

∆
Z
∆

) 1
2

In order to rewrite the equilibrium equations in a linear form a force density vector is introduced
as shown below:

(2.4) q = L−1n

With the aid of equations (2.1) and (2.4) the unknown free nodes coordinates can be found from
the equilibrium equations (2.2): To simplify the formulas auxiliary matrices are introduced:
D = CTQC, D = CTQC, where Q is a diagonal matrix of force densities imposed in the
elements. Thus, each set of force density values yields a different configuration of a given
cable net.

For further details regarding the Force Density Method [9].

2.2. Catenary cable element

Flexural and shear stiffness in structural cable elements are assumed to be zero which means
that we consider them as working only in tension. However such elements can carry transverse
loads and in the case of self-weight they take form of a catenary line with variable tensile force.

A cable element along with symbols used subsequently in this paper is presented in Fig. 2.
In this case tensile stiffness of the element is assumed to be infinite which is an auxiliary
problem for solving a general problem of an elastic cable with stiffness EA. The solution of

Fig. 2. Cable element under self-weight
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differential equations of equilibrium for an elastic cable is given below [10]:

(2.5)

x(s0) =
Hs0
E A
+

H
µ

[
arsinh

(
VA

H

)
+ arsinh

(
µs0 − VA

H

)]

z(s0) =
VAs0
E A

(
1 −

µs0
2VA

)
+

H
µ



√
1 +

(
VA

H

)2
−

√
1 +

(
VA − µs0

H

)2

where: s0(x) =
H
µ

[
sinh

(
µ

H
x − ζ

)
+ sinh ζ

]
, ζ = arsinh

(
hη

l sinh η

)
+ η, η =

µl
2H

.

As it can be seen in eq. (2.5), the coordinates of points lying on the catenary line are
functions of s0 which is a natural coordinate measuring the length of unstretched cable under
self-weight (see Fig. 2). Unknown components of tensile force in a beginning point A of a cable
(VA and H) can be found with the aid of boundary conditions for an end point B: x = l for
s0 = L0, z = h for s0 = L0.

Eventually, two equations for VA and H in the elastic catenary with initial (unstretched)
length L0 are presented below:

l =
HL0
E A
+

H
µ

[
arsinh

(
VA

H

)
+ arsinh

(
µL0 − VA

H

)]

h =
VAL0
E A

(
1 −

µL0
2VA

)
+

H
µ



√
1 +

(
VA

H

)2
−

√
1 +

(
VA − µL0

H

)2

(2.6)

A function of tensile force in a catenary cable element is given by formula:

(2.7) N (x) = H cosh
(
µ

H
x −

µl
2H

)
Maximum force value occurs always on the upper support and minimum force value occurs in
the lowest point of a cable. Horizontal force component is constant along cable because of lack
of horizontal load.

3. Theory and calculations

3.1. Extended Force Density Method – stage 1

As the original Force Density Method presented in Section 2.1 has some limitations, the
new extended version will be proposed. In the first stage the Force Density Method equations
are rephrased in order to simplify the structure definition and to add sliding supports.

As it was shown in Section 2.1 the structure of incidence matrix depends on the boundary
conditions because free nodes are always numbered starting from 1. This is not very convenient,
especially when we use geometrical data from other programs or we want to shift the fixed
nodes. Therefore, in the Extended Force Density Method order of columns in incidence matrix
is arbitrary and only after defining numbers of fixed nodes the submatrices C, C can be built
by picking proper columns.
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A second disadvantage of the original Force Density Method is only one type of boundary
condition which is a hinged support. Adding sliding supports enables defining the symmetry
condition in order to reduce the size of a structure model when it is possible. Seven types
of sliding supports corresponding to different displacement directions blocked can be distin-
guished, i.e.: xyz, xy, yz, xz, x, y, z. In such situation different nodes can be free or fixed in
different directions. In order to include all the possible types of supports in the Extended Force
Density Method submatrices of incidence matrix are defined separately for each direction, i.e.:
Cx , Cy , Cz , Cx , Cy , Cz . A new system of equilibrium equations is given below:

(3.1) x = D−1
x

(
px − Dxx

)
, y = D−1

y

(
py − Dyy

)
, z = D−1

z

(
pz − Dzz

)
where: Dx = CT

x Q Cx , Dy = CT
y Q Cy , Dz = CT

z Q Cz , Dx = CT
x Q Cx , Dy = CT

y Q Cy ,
Dz = CT

z Q Cz .
In the general case number of equations for each direction can be different.

3.2. Extended Force Density Method – stage 2

3.2.1. Introduction

The second and more important stage of enhancement of the Force Density Method is
its generalization for nets under self-weight consisting of slack and taut cables. A system
of equilibrium equations (3.1) and formulas for elastic catenary cable (2.6) are the basis for
proposed Extended Force Density Method.

The main idea of the original version of the method is a concept of force density which
is a ratio of tensile force to length of a straight element. As it was shown in the Section 2.2,
applying self-weight to a cable element causes a change in the geometry from straight to
catenary line and in the tensile force function from constant to 3. Therefore, a substitutive

Fig. 3. Real and substitutive cable element under self-weight and force components in A and B nodes
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element is introduced as shown in Fig. 3. It is statically equivalent to the real one because of
the force components applied to the nodes. Forces NA and NB in the beginning and ending
of cable are decomposed to a constant part Nsub and variable parts (RA, RB) which are the
reaction forces from self-weight. New definition of the force density is based upon a constant
component and due to proportion between forces and dimensions we can introduce the formula
for q:

(3.2) q =
Nsub

L
=

Vsub
h
=

H
l

According to assumed signs of vertical force components we can write down the relations:

(3.3) VA = Vsub + RA, VB = Vsub − RB

In order to implement the presented idea of a substitutive element to the Force Density Method
two steps are necessary:

1) modify Extended Force Density Method equation for z direction by adding a vector of
reactions from self-weight pr to external load vector pz : Dzz = pz + pr − Dzz;

2) find force density vector q for a cable net under self-weight.
These steps will be presented in the following subsections.

3.2.2. Finding reactions from cable self-weight
According to Pałkowski [8] reaction forces from self-weight in a cable element can be

calculated with the aid of an auxiliary simply-supported beam of a span equal to the horizontal
span of a cable (see Fig. 4).

Fig. 4. Auxiliary beam for finding reaction forces

Beam load is a horizontal projection of cable self-weight:

(3.4) p(x) = µs
ds
d x
= µ

ds0
d x

where s denotes a natural coordinate measuring length of stretched cable, µs and µ denote
self-weight of stretched and unstretched cable in kN/m. The second equality in (3.4) means that
self-weight of an infinitesimal segment is conserved after stretching.
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Reaction forces in the auxiliary beam under given load are as shown below:

(3.5) RA = µL0 − RB, RB =
1
l

l∫
0

p(x)x d x =
µ

l

l∫
0

x(s0)
ds0
d x

d x

In order to simplify calculation of RA and RB it is assumed that x (s0) = x, so here we
consider unstretched cable and the reaction force can be given as:

(3.6) RB =
q2l
µ

[
2η sinh(2η − ζ ) − cosh(2η − ζ ) + cosh ζ

]
with: η =

µl
2H
=

µ

2q
, ζ = arsinh

(
hη

l sinh η

)
+ η, h = zB − zA, l =

√
(xB − xA)2 + (yB − yA)2.

To define a vector of reaction forces in free nodes of a cable net we must sum up the
reactions from each element joined to the node. It will be convenient to define new matrices
consisting of zeros and ones on the basis of the matrix Cz = Cz,A −Cz,B. Matrix Cz,A has ones
in columns representing beginning nodes and Cz,B in columns representing ending nodes of
elements. Then, according to equation (3.5), vector pr can be defined as shown below:

pr = CT
z,ArA + CT

z,BrB = CT
z,A(w − rB) + CT

z,BrB = CT
z,Aw − CT

z rB

where rA and rB are vectors of reaction forces in beginning and ending nodes of elements, and
vector w consists of values of total weight of each element.

Because of the simplifying assumption stated above reaction force calculated according to
formula (3.6) is not exact. It can be demonstrated that for slack elements relative error is smaller
than 0.05% (compared to an exact solution). For taut elements comparably high accuracy is
reached with a reaction force equal to half of a total element weight. Therefore, in EFDM
vectors rA and rB contain values of reaction forces calculated either by formula (3.6) for slack
or as µL0/2 for taut elements.

System of equilibrium equations in EFDM is given below:

(3.7)




Dxx = px − Dxx

Dyy = py − Dyy

Dzz = pz + pr − Dzz

3.2.3. Finding force density vector under self-weight
Purely geometric FDM problem can be summarized as:
find a cable net configuration under given point loads and assumed force densities

satisfying equilibrium equations in each free node.
Searching for a configuration of the same net under self-weight demands calculating the

force densities which corresponds to this unique geometry. It can be achieved by solving
additional system of equations characterizing elastic cables element under self-weight. Sub-
stituting (3.2), (3.3), (3.5)1 and (3.6) to equations (2.6) turns (2.6)2 to identity and leaves one
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constraining equation for each cable element (2.6)1:

(3.8) gw
(
xA,B (q), yA,B (q), zA,B (q), q

)
=

HL0
E A
+

H
µ

[
arsinh

(
VA

H

)
+ arsinh

(
µL0 − VA

H

)]
− l

where: H = H (q), VA = VA
(
x (A,B) (q), y(A,B) (q), z(A,B) (q), q

)
, l = l

(
x (A,B) (q), y(A,B) (q)

)
For the whole cable net we get a system of nonlinear equations defined by (3.8):

(3.9) g(q, x(q), y(q), z(q)
)
= 0

Let’s assume that initial configuration of the net is represented by the force density vector q0
which is not equal to unknown vector qw for structure under self-weight. Starting from initial
vector q0 we can implement the iterative Newton procedure which assumes linearization of

equations in every step according to the formula: g (q0
)
+

dg
dq

�����q=q0

∆q = 0.

The solution of this linear problem may be given as:

(3.10) ∆q = G−1b

where: G = dg
dq

�����q=q0

, b = −g (q0
)
.

Because constraint function g depends on force density vector q directly and indirectly
through coordinates x(q), y(q), z(q) matrix G will be calculated with the aid of chain rule:

(3.11) G = dg
dq =

∂g
∂x

∂x
∂q +

∂g
∂y

∂y
∂q +

∂g
∂z

∂z
∂q +

∂g
∂q

where, after Schek [9], and taking into account adjustments introduced in this section we have:

∂x
∂q = −D−1

x CT
x X∆,

∂y
∂q = −D−1

y CT
y Y∆,

∂z
∂q = −

(
Dz −

∂pr
∂z

)−1 (
CT
z Z∆ −

∂pr
∂q

)
The rest of required in (3.11) derivatives were derived by the author and are included in her
PhD thesis [12] but due to their complex form will not be quoted here.

As it was mentioned in subsection 3.2.2, vector of reaction forces from self-weight pr is
calculated approximately. In the PhD thesis [12] it was demonstrated that relative error of
vector q calculated according to presented above method is lower than 0.02% for majority of
a cable element configurations. Only a cable with particular and rare geometry (L = L0 and
large values of l and h) can give a relative error of almost 2% compared to the exact solution.

3.2.4. EFDM – iterative procedure
Finding cable net configuration under self-weight with the use of system of equations (3.7)

requires prior determining the force density vector satisfying the (3.9) restrictions. That can be
achieved with the iterative procedure described below:

1) assume initial vector of force densities q0 and find initial geometry of cable net with (3.7);
2) determine a vector of force density increments ∆q from (3.10);
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3) calculate a new force density vector: q1 = q0 + ∆q and find new geometry with (3.7);
4) if stop condition is satisfied finish calculations, if not – go to step 2.
A stop condition is used to check if achieved accuracy of solution is sufficient. If qw is the

exact solution, and qi is a current solution we need to check if:

(3.12) ��g
(qw)

g − gg (qi) �� g ≤ ε

where ε is a vector of allowable error defined by the user.

4. Results and discussion of verification and tests

4.1. Computer program

In order to perform calculations by proposed here Extended Force Density Method a com-
puter program UC-Form was developed by the author. Program consists of 25 Scilab files
which execute calculations and present results in graphical form and one auxiliary MS Excel
file which helps to define input data in most convenient way. There are three main paths of
executing calculations to choose by the user:

1) form-finding without self-weight according to subsection 3.1;
2) form-finding without self-weight according to subsection 3.1 and with additional con-

straints (for details see [9] and [12]);
3) form-finding with self-weight according to subsection 3.2.

4.2. Verification of EFDM

In order to verify the accuracy of proposed EFDM a simple example of a cable element
under self-weight is considered. For EFDM procedure a cable is divided into two parts in order
to get a value of maximum slack z2 (Fig. 5) and compare it with the exact value.

Fig. 5. Verification example

Both elements are made of the same type of steel wire rope with given properties:
µ = 0.008 kN/m, E = 160 · 106 kN/m2, A = 80 · 10−6 m2, L0 = 5.5 m and span of sup-
ports is l1 + l2 = 5 + 5 = 10.0 m.
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Exact catenary shape has maximum value of slack: zexact = 2003.061 mm Horizon-
tal cable force component is: Hexact = 0.052 kN and reaction force from self-weight is:
RA,exact = 0.023 kN. According to these values force density is: qexact = 0.0105 kN/m.

The results of calculation with EFDM for initial value q0 = 1.0 kN/m are presented in
Table 1 (iterations from 6 to 9) and in Fig. 6.

Table 1. Results of EFDM verification

Size
Iteration no. / calculation error (m)

6 / 2.5 · 10−2 7 / 9.8 · 10−4 8 / 1.3 · 10−6 9 / 2.6 · 10−12

z2 (mm) 1932.498 2005.808 2003.074 2003.071

RA (kN) 0.023 0.023 0.023 0.023

q (kN/m) 1.083 · 10−2 1.047 · 10−2 1.048 · 10−2 1.048 · 10−2

Fig. 6. Convergence of results in verification example

As it is shown on the graphs below (Fig. 6), both maximum slack and force density converge
to exact values which proves that theory and numerical implementation of EFDM provide good
results for catenary cables under self-weight.
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4.3. Influence of initial force density values on convergence of EFDM

Because EFDM utilizes iterative procedure to find force density values in cable elements
under self-weight it is crucial to investigate the influence of initial force density values on
convergence and accuracy. A simple cable net shown in Fig. 7 is employed for this purpose.

Fig. 7. Cable net for initial force densities analysis

Coordinates of fixed nodes are given in Table 2. Self-weight and tensile stiffness of a rope
are assumed as: µ = 0.1 kN/m, E A = 12800 kN. Initial lengths of elements are assumed as:
L01 = 0.67 m, L02 = 0.67 m, L03 = 0.55 m, L04 = 0.60 m, L05 = 1.29/0.95/0.60 m. In
the fifth cable three different values of initial length are applied to analyse different possible
configurations.

Table 2. Coordinates of fixed nodes

No. of fixed node
Coordinates (m)

x y z

1 0.0 0.0 0.0

3 0.5 0.5 0.0

5 0.0 1.0 1.0

6 1.0 1.0 1.0

In each case initial force density value q0 is the same in every element. Allowable error of
EFDM calculations is assumed ε = 1 · 10−3 m. Table 3 summarizes number of iterations and
calculation errors obtained for different initial force density values.

Calculation error is lower than allowable value in each case of performed calculations except
from the one with L05 = 1.29 m and q0 = 0.1 m. In this case a singular matrix appeared in the
ninth iteration and there was no solution achieved. The lowest numbers of iterations in the first
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Table 3. Number of iterations and calculation errors

q0 (kN/m)
L05 = 1.29 m L05 = 0.95 m L05 = 0.60 m

Number of
iterations

Calculation
error (m)

Number of
iterations

Calculation
error (m)

Number of
iterations

Calculation
error (m)

20 52 8.77 · 10−4 11 8.62 · 10−4 3 4.21 · 10−4

15 30 4.68 · 10−4 16 8.30 · 10−4 3 4.17 · 10−4

10 46 8.81 · 10−4 8 3.50 · 10−4 3 8.02 · 10−4

5 36 5.08 · 10−4 13 3.13 · 10−4 4 3.35 · 10−5

2 37 9.71 · 10−4 34 8.33 · 10−4 4 2.62 · 10−4

1 206 9.13 · 10−4 15 4.31 · 10−4 4 3.01 · 10−4

0.5 5 9.62 · 10−4 5 8.32 · 10−4 4 2.36 · 10−4

0.2 15 4.20 · 10−4 6 9.86 · 10−4 5 3.53 · 10−4

0.1 – – 5 9.50 · 10−4 7 3.28 · 10−4

0.05 7 8.63 · 10−4 6 6.07 · 10−4 8 6.87 · 10−4

0.01 41 4.33 · 10−4 9 5.36 · 10−4 6 6.70 · 10−4

0.005 84 6.27 · 10−4 21 5.46 · 10−4 4 4.99 · 10−4

case are associated with initial force density values close to the final ones but the variability is
not regular. It can be attributed to the fact that final values are different for each element. In the
second case tendency is similar to the first case but the iteration numbers are lower and more
regularly distributed. In the third case, where completely prestressed cable net is achieved, the
iteration numbers are low in each analysed case of initial force density.

A graph in Fig. 8 summarizes obtained above results. It can be observed that initial force
density values close to the final ones contribute to lower number of iterations, although with
some exceptions. These irregularities result from different values of final force densities in

Fig. 8. Dependence of number of iterations on initial force density value
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different elements and from iterative procedure in which elements may change from slack
to taut (or vice versa) in subsequent steps. It can be noticed that more prestressed cable net
corresponds to more flat q0 distribution. All three final configurations with force density values
are shown in Fig. 9.

Fig. 9. Final configuration and force densities for L05 = 1.29 m
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Taking above results and comments into account it is recommended to assume lower values
of initial force-densities whichmeans approximately from 0.1 to 1.0 kN/m. In the case of slow or
lack of convergence it is good to try different values because even slight change can be effective
as it can be seen in the first case. In some situations it may be helpful to obtain a configuration
of a cable net without self-weight but with other restrictions (forces in elements, distances
between given nodes) if we can predict that it will be close to the final, searched geometry.
Obtained solution should be a starting point for analysis with self-weight.

4.4. Influence of allowable error of EFDM calculations on results

Second important in EFDM analysis parameter is allowable error of calculations ε which
defines a stop condition 4). In this subsection influence of its value on the accuracy of resulting
coordinates and forces is analysed. A simple cable net consisting of five elements is used. Fixed
nodes coordinates are given in Table 4.

Table 4. Coordinates of fixed nodes

No. of fixed node
Coordinates (m)

x y z

1 –4.0 –3.0 0.0

3 –3.0 4.0 0.0

4 3.0 2.0 0.0

5 5.0 –2.0 0.0

6 2.0 –5.0 0.0

Weight and tensile stiffness of assumed rope are: µ = 0.1 kN/m, E A = 12800 kN. Initial
lengths of elements are summarised in Fig. 10.

Fig. 10. Configuration of cable net under self-weight
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In the first analysis the allowable error is assumed as: ε = 1 · 10−4 m and obtained error
value is: εreal = 3.54 · 10−6 m so this result is further considered as the exact solution shown in
Fig. 10.

Coordinates of free node and maximum values of forces in elements are given in Table 5.

Table 5. “Exact” coordinates and forces

Free node coordinates (m) Maximum element forces (kN)

x2 y2 z2 N1 N2 N3 N4 N5

0.598 –0.427 0.966 0.764 2.349 0.653 1.334 1.570

In order to assess the influence of allowable error on results three different values are
considered: ε1 = 0.1 m, ε2 = 0.01 m, ε3 = 0.001 m in subsequent analyses. Relative (to given
in Table 5 values) errors of free node coordinates and element forces are shown in Fig. 11 and
Fig. 12. It should be noticed that real calculation error values are approximately an order of
magnitude smaller than allowable ones.

Both diagrams show that assuming higher precision of calculations (lower allowable error)
is associated with lower relative errors of coordinates and forces. Precision of ε = 0.01 m is

Fig. 11. Relative error of free node coordinates

Fig. 12. Relative error of element forces
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not sufficient yielding relative errors of coordinates of about 1% and of forces of about 5%. It
is hence recommended to apply allowable error value not greater than 0.001 m. Similar tests as
shown here are also advisable to analyse convergence of results.

5. Conclusions
Presented here Extended Force Density Method combines the Schek’s idea of force density

and well-known solution of a catenary cable. Such an approach allows for solving wider range
of cable nets problems. Because of the exact, catenary formulation of a cable element almost
no restrictions for geometry are present, as opposed to approximate, parabolic formulation.
Thanks to adding self-weight of structure into a form-finding process obtained geometry and
forces are approximately equal to exact solution.

Verification example shown in subsection 4.2 proves that methodology and theory applied
in EFDM provide good compliance with the exact solution. Two subsequent analyses show that
obtaining high accuracy results in possibly short time depend on the appropriate parameters.
Applying proper values of initial force densities is necessary to get the solution with the lowest
possible number of iterations. Allowable error of calculations is crucial for obtaining accurate
results. Levels of accuracy for coordinates and force values are different so it is important to
analyse errors for both.

Possible applications of EFDM along with some numerical examples obtained with use of
UC-Form program will be presented in a second part of the article [13].

References
[1] J.H. Argyris, T. Angelopoulos, and B. Bichat, “A general method for the shape finding of lightweight ten-

sion structures”, Computer Methods in Applied Mechanics and Engineering, vol. 3. pp. 135–149. 1974, DOI:
10.1016/0045-7825(74)90046-2.

[2] M. Bruggi, “A constrained force density method for the funicular analysis and design of arches, domes and
vaults”, International Journal of Solids and Structures, vol. 193–194. pp. 251–269. 2020, DOI: 10.1016/
j.ijsolstr.2020.02.030.

[3] P. Christou, A. Michael, and M. Elliotis, “Implementing slack cables in the force density method. Engineering
Computations”, International Journal for Computer-Aided Engineering and Software, vol. 31. no. 5. pp. 1011–
1030. 2014, DOI: 10.1108/EC-03-2012-0054.

[4] M. Cuomo and L. Greco, “On the force density method for slack cable nets”, International Journal of Solids and
Structures, vol. 49. pp. 1526–1540. 2012.

[5] A.S. Day, “An introduction to dynamic relaxation”, The Engineer. Technical Contributors Section, pp. 220–221.
1965.

[6] H. Deng, Q.F. Jiang, and A.S.K. Kwan, “Shape finding of incomplete cable-strut assemblies containing slack
and prestressed elements”, Computers and structures, vol. 83. pp. 1767–1779. 2005, DOI: 10.1016/j.compstruc.
2005.02.022.

[7] F. Otto: Tensile structures. MIT Press, 1973.
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Rozszerzona metoda gęstości sił do analizy siatek cięgnowych pod
cięźarem własnym. Część I – Teoria i weryfikacja

Słowakluczowe: siatki cięgnowe, kształtowanie, rozszerzona metoda gęstości sił, cięźar własny

Streszczenie:

Jest to pierwsza część artykułu dotyczącego Rozszerzonej Metody Gęstości Sił(RMGS). Zaprezen-
towano w niej załoźenia i zasady RMGS, a takźe proste przykłady weryfikacyjne. Metoda ta słuźy
do kształtowania konstrukcji cięgnowych pod wpływem cięźaru własnego, a takźe dowolnych obciąźeń
węzłowych.

Cięgno jako element konstrukcyjny zachowuje się odmiennie od powszechnie stosowanych elementów
nośnych. Zazwyczaj zakłada się jego zerową sztywność na zginanie. Z tego powodu wymaga równieź
stosowania innychmetod projektowania, analizy statycznej, dynamicznej, montaźu czy nawet eksploatacji.
Element cięgnowy o ustalonym przekroju oraz długości moźe pod wpływem cięźaru własnego przyjąć
nieograniczoną liczbę kształtów zaleźnie od rozstawu podpór i dodatkowych obciąźeń.Wprzypadku siatki
cięgnowej te moźliwości gwałtownie rosną. Z tego powodu proces projektowania konstrukcji cięgnowych
wymaga etapu wstępnego zwanego kształtowaniem (ang. form-finding). Jego efektem jest uzyskanie
stabilnej geometrycznie konfiguracji początkowej potrzebnej do dalszych analiz. Stosowane powszechnie
metody kształtowania zakładają niewaźkość konstrukcji lub w przybliźony sposób uwzględniają cięźar
własny. Co za tym idzie słuźą one głównie do uzyskania poźądanej konfiguracji, ale nie rozkładu sił
w cięgnach. Włączenie rzeczywistego cięźaru własnego konstrukcji stwarza znacznie szersze moźliwości
wykorzystania takiej metody, a takźe zapewnia dokładniejsze wyniki.

W artykule zaprezentowano podstawowe załoźenia Metody Gęstości Sił wprowadzonej przez Sche-
ka [9]. Polega ona na poszukiwaniu współrzędnych węzłów niezamocowanych siatek cięgnowych na
podstawie równań równowagi tych węzłów. W celu uzyskania liniowej formy równań względem poszuki-
wanych współrzędnych wprowadza się pojęcie gęstości siły zdefiniowanej jako stosunek siły do długości
danego elementu. W oryginalnej wersji metody kaźdy element cięgnowy jest prostoliniowy i niewaźki,
a obciąźenia i podpory przegubowe nieprzesuwne zakłada się w dowolnych węzłach. Dla łatwiejszego
opisu geometrii siatki wprowadza się macierz połączeń, która wskazuje numery węzłów początkowych
i końcowych poszczególnych elementów. Kaźdemu przyjętemu zestawowi gęstości siłw elementach od-
powiada inna konfiguracja siatki cięgnowej i na tej podstawie poszukuje się geometrii siatki spełniającej
wymagania wytrzymałościowe, uźytkowe i architektoniczne.

W pracy przedstawiono podstawowe wzory opisujące zachowanie cięgna spręźystego pod działaniem
cięźaru własnego. Oryginalna wersja Metody Gęstości Siłoraz te wzory są podstawą zaproponowa-
nej Rozszerzonej Metody Gęstości Sił, która w sposób dokładny uwzględnia cięźar własny elementów
cięgnowych. Moźe ona zatem słuźyć zarówno do analizy siatek cięgnowych wstępnie spręźonych (o ele-
mentach prostoliniowych), jak równieź siatek całkowicie lub częściowo luźnych. W RMGSwprowadzono
moźliwość łatwiejszego opisu geometrii siatki, w którym nie ma potrzeby wcześniejszego uwzględniania
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rozmieszczenia węzłów wolnych i zamocowanych. Budowa macierzy połączeń jest niezaleźna od definicji
warunków brzegowych. Umoźliwiono równieź wprowadzenie podpór przegubowych przesuwnych.

Dodanie cięźaru własnego elementów cięgnowych polega na uwzględnieniu równań opisujących
rzeczywiste zachowanie cięgna spręźystego, czyli linię zwisu w kształcie krzywej łańcuchowej. W celu
zachowania idei gęstości siły wprowadza się prostoliniowy element zastępczy, statycznie równowaźny
z elementem zakrzywionym.Na końcach tego elementu przykłada się dodatkowo siły skupione równewar-
tościom reakcji od cięźaru własnego w rzeczywistym cięgnie. Siły te dodaje się od obciąźeń zewnętrznych
w kierunku pionowym, przez co modyfikacji ulegają równania równowagi węzłów dla tego kierunku.

W RMGS poszukuje się konfiguracji siatki cięgnowej pod cięźarem własnym. W takim przypadku
gęstości sił nie są znane i nie moźna ich z góry narzucić. Są one poszukiwane na podstawie dodatko-
wego, nieliniowego układu równań składającego się z warunków opisujących zachowanie cięgna pod
cięźarem własnym. Znajdowanie ostatecznych wartości gęstości siłoraz odpowiadającej im konfiguracji
jest procesem iteracyjnym zrealizowanym przy uźyciu metody Newtona.

W niniejszej pracy przedstawiono przykład weryfikacji zaproponowanej RMGS, w którym pokazano,
źe uzyskano zbieźność metody do rozwiązania prawidłowego. Przeanalizowano równieź proste przykłady
mające na celu ustalenie optymalnych wartości danych początkowych do obliczeń. Przebadano wpływ
wartości początkowych gęstości sił na dokładność i szybkość obliczeń, a takźe wpływ dopuszczalnego
błędu obliczeń na uzyskiwane wyniki.

Uzupełnieniem części I artykułu jest część II – Przykłady zastosowania, w której przedstawiono
praktyczne przykłady wykorzystania moźliwości zaproponowanej metody obliczeniowej.
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