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The present paper is dedicated to the analysis of deployable tensegrity columns. The main aim of this work is to 

present a technique, developed by combining the finite element (FE) analysis and the multibody dynamics (MBD) 

simulation, which enables precise and reliable simulations of deployable structures. While the finite element model 

of the column provides information on structural behavior in the deployed state, the dynamical modeling allows 

to analyze various deployment scenarios, choose active cables for the deployment and for the self-stress 

application, and to control distributions of internal forces during the assembly process. An example of a deployable 

column based on a popular tensegrity module – a 3-strut simplex – is presented. By analyzing the proposed column 

with the use of the developed method it is proven that the technique is suitable for complex simulations of 

deployable systems.
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1. INTRODUCTION

In recent years, a progressive development of deployable structures has been be observed. Such 

structures, also known as expandable, erectable or developable systems, are transported in a stowed 

form and deployed at the place of use. They must be designed specifically for large, autonomous

geometry changes, as they are expanded, usually automatically, from the folded form to the required 

service configuration. 

Deployable structures are applied both in space and on Earth, where they are eagerly used by 

architects as well as civil engineers. They are commonly used as temporary and emergency structures, 

as they can be quickly erected and disassembled when no longer needed. The structures aimed at 

space applications, such as masts, solar arrays or antennas, should be very compact when stowed and 

must be designed for automatic expansion in space. Some of the developed structural concepts and 

technology needs for large space systems are presented in [1, 2]. Deployable structures for earthly 

applications do not have to meet the same criteria as in space, as they are used in a completely 

different environment. However, some of the requirements remain – they should also have a compact 

stowed form and they should be deployed automatically or with a limited contribution of a human. In 

[3] a portable scissor bridge is presented, which is used in emergency situations to access remote 

locations affected by a disaster. A concept of lightweight tensairity structures, that can be used as 

deployable wide span roofs, temporary buildings or bridges, is discussed in [4].

One of the most important features of deployable systems is their stiffness-to-mass ratio. They 

are usually very lightweight structures with a relatively high load-bearing capacity. Moreover, they 

can be easily transported due to the compact stowed form, and deployed even to very large sizes 

depending on the application. The crucial aspect of the design of such systems is to find a proper 

balance between the dimensions of the folded structure and the required form and load-carrying 

capacity of the erected one. Therefore, not every structural system is suitable for the deployment. 

Among the structures commonly used in such applications, tensegrity systems [5-7] deserve special 

attention. 

The word “tensegrity” was created by Buckminster Fuller who combined two terms “tension” 

and “integrity” [8]. Various definitions of tensegrity can be found in the literature [5-8]. Fuller defined 

a tensegrity structure as “an assemblage of tension and compression components arranged in a 

discontinuous compression system” [8]. Tensegrity systems have many interesting properties that 

arise from the occurrence of infinitesimal mechanisms, which are balanced with self-equilibrating 
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sets of forces, called self-stress states. Such forces depend neither on the outer loads nor on the applied 

boundary conditions. Tensegrity structures are lightweight, they have advantageous stiffness-to-mass 

ratio and may be used in adaptive systems. Their behavior can be controlled and adjusted by changing 

the values of self-stress forces.

In [9] inherent properties of tensegrity, which allow to regard them as smart structures, are 

described. These are: self-control, self-diagnosis, self-repair and self-adjustment. The mentioned 

features are very important in the deployable applications, especially the ability of self-stiffening 

under the external load and the possibility of active control through the adjustment of prestressing 

forces [9]. What is important, the stiffness of the structure can be controlled by changing the forces 

only in selected active cables, which allows the designers to reduce the number of actuators. Also the 

deployment of the structure can be performed using some active elements, which can (but not 

necessarily) be the same cables that are used for structural control.

Several works on deployable tensegrity structures can be found in the literature. A group of 

scientists from the Swiss Federal Institute of Technology in Lausanne (EPFL) developed a prototype 

of a deployable tensegrity footbridge. The structure described in [10-12] consists of four pentagonal 

tensegrity modules, which together span a distance of 16 m. Tibert, in his doctoral thesis [13], presents 

a concept of a deployable tensegrity mast that was inspired by the structure proposed by Snelson in 

his patent from 1965 [14]. The mast is constructed using 3-strut simplex modules with an overlap. 

Tibert [13] tested various deployment schemes and analyzed mechanical behavior of the structure. A 

similar structure is described in [15], where an algorithm for the reconfiguration of a two-stage 

tensegrity mast is proposed.

In the present paper, a deployable tensegrity column is proposed. The main aim of this work 

is to present a technique developed by the authors, that can be used for analysis of adaptive tensegrity 

columns. The described method is based on the combination of the finite element (FE) analysis and 

the multibody dynamics (MBD) simulation. While the finite element model of the column provides 

information on structural behavior in the deployed state, the dynamical modeling allows to analyze 

various deployment scenarios, choose active cables for the deployment and for the self-stress 

application, and to control distributions of internal forces during the assembly process. The FE 

analysis was performed in SOFiSTiK software, using the geometrically non-linear analysis. The 

MBD simulations were made in MSC ADAMS using dynamical systems analysis described in detail 

further.

The structures considered in this paper are three variants of a tensegrity column that is based 

on a 3-strut simplex module. The developed approach allowed the authors to analyze various 
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deployment scenarios of the column, including an original scenario which has not yet been presented 

in the literature. This innovative deployment scheme turned out to be most efficient and it assured the 

best stability of the structure during the erection.

The proposed column can be used as a support of temporary structures, such as lightweight 

ceilings, large scale tents, etc. It is also aimed at emergency applications, for example as an additional 

support of the structure in case of its partial damage or in the endangered buildings to prevent their 

abrupt collapse. Among possible applications of such structures one should also mention: areas 

affected by the earthquakes, places in the structures which are difficult to access, historic buildings 

where it is impossible to construct typical heavy supports. In the presented analyses it is assumed that 

the loads from the supported structure are transferred to the nodes of the upper surface of the column 

in the form of three concentrated forces acting vertically.

2. SYNERGY OF FE MODELING AND MBD SIMULATION

Finite element modeling enables qualitative and quantitative analyses of the behavior of deformable 

structures with the defined boundary conditions and loading. It takes into account structural shape 

changes during the simulations. Multibody dynamics simulation, on the other hand, enables fast 

simulations of the systems consisting of rigid bodies with any translational or rotational 

displacements. It does not consider deformations of structural members, since its equations of motion 

are built for rigid bodies, applied forces and physical constraints. The combined use of MBD and FE 

analysis creates synergy that results in precise and reliable simulations of complicated structural 

systems in motion.

During the process of erecting a temporary column, the following computations and activities 

typical for FE modeling and MBD simulations are intertwined and supplemented.

FE-1: Final form finding of tensegrity configurations is performed. Geometry and self-stress 

parameters are defined.

MBD-1: Struts and cables lie in the initial position (on top or next to each other). The following 

parameters are defined: active structural members, friction between the elements, etc.

MBD-2: Modules (individual or in groups) approach the required configuration. Realization of the 

requested form is achieved by changing the length of active cables.

FE-2: The found final configuration can be checked and analysis of displacements and stresses can 

be performed.
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FE-3: The range of prestressing forces can be determined so that the load-carrying capacity of 

individual structural members is not exceeded.

MBD-3: The prestressed structure stands and is ready to carry temporary loads.

FE-4: The structure works under the applied loads. Additional prestressing forces appear in cables, 

which stiffen the column [9]. Displacement and stresses can be calculated at any loading conditions, 

within the determined range of self-stress, in order to prevent the excessive deformation or structural 

damage.

3. FE MODELING OF THE COLUMN

Finite element model of a cable-strut structure with self-stress included is based on the  geometrically 

nonlinear theory [16]. Incremental formulation can be expressed in the form

(3.1) ( ) ,T � � �K q q Q

(3.2) 0( ) ( ) ( ),T L G NLS N� � �� �K q K K K q

where:

q  - vector of nodal displacements, �q  - increment of nodal displacement vector, TK  - tangential stiffness 

matrix, �Q  - increment on load vector, based on external loads and normal forces with the influence of 

geometrical changes of cables and struts, LK  - linear stiffness matrix, GK  - geometric stiffness matrix, ( )NLK q  
- symmetric displacement stiffness matrix,

0S  - multiplier of initial self-stress, N�  - increment of 
0S due to 

external loads.

Distribution of self-equilibrated normal forces to define the geometric stiffness matrix can be 

obtained by any method described in the literature [17, 18]. In the present paper a method based on 

the spectral analysis of the stiffness matrix is applied. SOFiSTiK software supported by programming 

in the Wolfram Mathematica environment is used for calculations. 

The structure proposed in this paper is a deployable column based on a popular tensegrity 

module – a 3-strut simplex (Figure 1). It is a cable-strut structure obtained from a regular prism 

through the rotation of its lower or upper base by 150 degrees clockwise or counter-clockwise. The 

single module has one infinitesimal mechanism and one corresponding self-stress state, which is 

represented by the relative forces in structural members multiplied by the factor S0. This factor is 

used further to express the level of self-stress.

SIMULATION OF A DEPLOYABLE TENSEGRITY COLUMN BASED ON THE FINITE ELEMENT... 547



 

In the analyzed structure three configurations of the module were used: standard, high and 

low (Figure 2). The geometric parameters as well as the self-stress values for the considered modules 

are given in Tables 1-2. The positive values of prestressing forces are assumed in the cables (elements 

in tension) and negative in struts (elements in compression).

Fig. 1. Geometry of the standard 3-strut simplex module – axonometry and three views

Table 1. Geometric parameters of three simplex modules

standard high low
height [m] 1.000 1.150 0.750

cable length [m]

bottom triangle 0.866 0.866 0.866

top triangle 0.866 0.530 1.230

diagonal 1.033 1.184 0.838

strut length [m] 1.390 1.390 1.390

Table 2. Self-stress states in three simplex modules

standard high low

cables

bottom triangle 0.154300·S0 0.092145·S0 0.222759·S0

top triangle 0.154300·S0 0.150562·S0 0.156846·S0

diagonal 0.318778·S0 0.356449·S0 0.262776·S0

struts -0.429065·S0 -0.418469·S0 -0.435974·S0

The analyzed column consists of four 3-strut simplex modules, connected in the nodes via 

mutual cables of their bases. The modules rotated clockwise and counter-clockwise are arranged 

alternately. 

Three configurations of the column were considered (Figure 2):

� standard – a 4.00 m high column, consisting of four standard simplex modules;

� high – a 4.15 m high column, consisting of three standard simplex modules and one high 

module;

� low – a 3.75 m high column, consisting of three standard simplex modules and one low 

module.

The described configurations are three variants of the same column, as the upper module can 

be deployed to different heights depending on the considered use. All simplex modules have struts of 
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the same length and the height adjustment is performed by changing the lengths of the cables (see 

Table 1). In the considered case, a reasonable range of the height adjustment (taking into account 

forces in structural members and practical aspects of deployment) is 4.00 m +0.15 m/-0.25 m.

The columns consisting of four modules have four possible self-stress states. In the present 

study, a uniform state of prestressing forces was adopted – the same values of S0 were introduced to 

all modules. The columns were supported in three bottom nodes and loaded with three concentrated 

forces  P=8.33 kN applied to the upper nodes of the structures. The adopted load corresponds to the 

uniformly distributed surface load q=1 kN/m2 acting on the area of 25 m2. Additionally, the self-

weight of structural members was considered. The load and self-stress values were adopted so that 

the forces in cables and struts do not exceed 90 % of the maximum load specified below. In the 

analyzed structures, typical elements taken from the available systems were used. The following cross 

sections were applied:

� cables – ϕ=10.0 mm made of steel SC460 – maximum load NRd=71.1 kN,

� struts – hollow cross-section ϕ=54.0 mm, wall thickness 2.6 mm, made of steel S355J2 –

maximum load NRd=84 kN.

The columns were analyzed in SOFiSTiK software [19], using the finite element method 

(FEM) within the geometrically non-linear theory that takes into account the effects of the 

geometrical system modification and includes the second-order theory (to consider the effect of self-

stress). It should be noted, that depending on the geometry and elastic properties of the simplex 

module, various responses (from a module with struts locking to a fully foldable structure) and 

various failure modes (rapture of triangle cables, slack of diagonal cables or buckling of the struts) 

may be obtained during the uniaxial compression. 

In the performed analyses three parameters were measured: vertical displacement of the upper 

node (see Figure 2), maximum tensile force in the cable and compressive force in the strut (elements 

with maximum forces are marked with red lines in Figure 2).
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a) b) c)

Fig. 2. Configurations of the column: a) standard column; b) high column; c) low column

Figure 3 shows how the considered columns deflect (on the top) under the given load 3·P=25 

kN, depending on the applied prestressing forces. The displacement was obtained numerically for 

selected values of the factor S0 and then approximated with a curve. It can be noticed that the 

displacement of the upper surface of the structure can be reduced by ~50 %, only by increasing the 

level of self-stress from 1 kN to 120 kN. When the column is deployed to a smaller height, 

considerably bigger values of deflections are obtained. In the high configuration, on the other hand, 

the deflections reach smaller values. This should be taken into account while designing the initial 

configuration of the structure.
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Fig. 3. Influence of self-stress on the displacement of the upper surface node

The diagrams of maximum tensile and compressive forces in structural members are presented 

in Figure 4. The forces, similarly to displacements, were obtained numerically for selected values of 

the factor S0 and then approximated with curves. It should be taken into account that the biggest 

values of the considered forces are reached in elements of the bottom module in the standard and high 

column, and in the top module of the low column (see red lines in Figure 2). Therefore, the curves in 

Figures 4a and 4b represent forces in two different cables and two different struts.

a) b)

Fig. 4. Influence of self-stress on: a) maximum tensile force in cables; b) maximum compressive force in 

struts

It may be noticed that the deployment of the column to a bigger height does not change the 

maximum values of the forces in structural elements. In the high column, the biggest forces occur in 

the same elements as in the standard one and, what is more, the values of these forces remain 

unchanged. When the column is deployed to a smaller height, the forces increase significantly. This 
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effect must be considered in the design process, as there is a risk of exceeding the load-bearing 

capacity of structural members with too high values of the applied self-stress.

4. MBD SIMULATIONS

MSC ADAMS/View was chosen to perform dynamic analyses of the considered deployable systems. 

This software had not been used much for simulations of spatial structures with self-stress; only a 

few papers dealing with single tensegrity modules can be found [20, 21]. Therefore, parallel or prior 

to simulations the authors verified the software by comparing selected results with the ones obtained 

from FE analysis.

In this paper, two deployment patterns of tensegrity columns described in the previous section 

were analyzed (Figure 5), in order to establish how many and which cables need to be controlled 

during the deployment and height adjustment. 

The first one is a classical, most intuitive version, described in detail e.g. by Tibert [13]. One 

of the column’s bases lays on an even surface, the gravity force acts perpendicular to this surface, so 

the mass forces act in the direction of the column’s axis the whole time. It will be referred in this 

paper as an A-pattern. The second one assumes preliminary assembly of individual modules in the 

horizontal position and then a module-after-module deployment. It will be referred in this paper as a 

B-pattern. In this pattern the system becomes a tensegrity column in the last phase of deployment, 

when the active cables finish the movement (Figure 5b – in the lower right corner).

a)  b)

Fig. 5. Deployment patterns: a) A-pattern; b) B-pattern

All the simulations assume movement in the gravity field and, after the deployment process, 

influence of external forces on structural elements. Mechanical properties i.e. masses and moments 

of inertia of elements are the same as in the FE computations. In the case of the struts, it is a 

straightforward relation, but cables were modeled in a specific way. Each cable consists of two bar 

members with the sum of masses and moments of inertia equal to the ones of a single steel cable. 

These bars are connected via a spring-damper element and a motion constraint (Figure 6). Each 
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section is connected with another one and with the struts using a ball-and-socket joint. Such a 

configuration enables the self-stress application using a spring’s preload and the deploying motion 

using a motion constraint. It should be noted that the proposed MBD model enables the introduction 

of increased friction at the end joints and increased cable damping caused by self-stress. However, 

these effects are not included at this stage, as they require some additional parameters taken for 

example from the laboratory tests. 

Fig. 6. Representation of a cable in dynamic simulations

The change of length is imposed only on the cables; there is no manipulation with the struts’ 

lengths. Struts and cable modules are connected with each other using ball-and-socket joints. 

Moreover, nodes of the bottom base are connected with the ground in a way that corresponds to the 

support system applied in the FE models. Each tip of an element is ended with a ball of a negligible 

mass of 10-4 kg (yellow pieces in figures) to assure a more flexible model manipulation throughout 

the analyzed scenarios. The same elements are used to model the cable behavior – the ball elements 

are connected by ball-and-socket joints, so when no force is transmitted through the cable it stays 

loose.

The performed simulations aimed at calculating dynamic forces acting on the structural 

members during the deployment. Each case was repeated for three different process times: 50, 100, 

200 seconds to establish if it has any influence on the results. It was assumed that shorter time periods 

would be difficult to realize in real applications due to performance limitations of small actuators that 

need to be used to control the lengths of the cables. Moreover, it was assumed that the lengths of the 

struts stay constant as opposed to some research papers [22, 23]. Such an assumption was made 

because it ensures a correct force distribution throughout the structure to sustain its form and to be a 

tensegrity-class object. By designing a proper control strategy for manipulation of the cables’ lengths, 

such a condition is fulfilled. The starting point for the simulations was to find the static equilibrium 

of the system, afterwards the simulation started what eliminated the initial system oscillations. All 

the simulations were performed using the basic solver “GSTIFF” integrator that uses backward 

differentiation methods and fixed coefficients for prediction and correlation, and using the basic 

formulation “I3” for the corrections of the computed integration error of the solution [24]. 

It was assumed that the deployment process consists of the following phases:
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• A-pattern:

Phase 1. The structure lays folded vertically on the ground.

Phase 2. It deploys according to a specific algorithm that controls horizontal cables’ lengths.

Phase 3. The top module adjusts its height to assure the desired pressure on the supported 

object.

Phase 4. The movement mechanisms are locked (in the physical application).

• B-pattern (Figures 7-8):

Phase 1. The structure lays folded horizontally on the ground.

Phase 2. Individual modules are prestressed to attain a tensegrity form.

Phase 3. The system deploys module after module starting from the bottom or raising all the 

modules simultaneously to avoid friction against the ground (this scenario is shown in this paper).

Phase 4. The top module adjusts its height to assure the desired pressure on the supported 

object.

Phase 5. The movement mechanisms are locked (in the physical application).

The simulations were performed in such a manner that the structure was set in its standard 

working position, then it was loosen to establish its most natural form when unstressed (which is 

meant to be the initial shape for deployment).

Both deployment patterns were analyzed in terms of stability. The stability shall be understood 

as an ability to remain in any geometrical configuration during the deployment when the movement 

of active elements stops; or as an ability to change the geometry in a predicted manner when the 

movement continues. The A-pattern showed very unstable behavior during the deployment. Various 

possibilities of controlling the lengths of the cables were investigated and they all pointed at poor 

stability and susceptibility to even small external disturbances. The B-pattern turned out to be stable 

at all deployment phases thanks to the adopted division on: deployment and prestressing of the 

individual modules, deployment of the structure to the vertical position.

SIDE VIEW TOP VIEW

Phase 1

Phase 2
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Phase 2

Phase 2

Fig. 7. Selected deployment phases of the column laying horizontally – phase 1 and 2 of B-pattern

SIDE VIEW TOP VIEW

Phase 3

Phase 3

Phase 3

Fig. 8. Selected deployment phases of the column – phase 3 of B-pattern

In further analysis the B-pattern is considered. Figure 9a shows distributions of the forces in 

all cables for the second phase of deployment. It should be noted that although the cables are in 

tension, the forces are marked as negative – it results from the specific way of modeling tensegrity 

structures in ADAMS, where cables are modeled as prestressed springs. 

The plot (Figure 9a) consists of two parts: disassembly and assembly. At the beginning of the 

simulation the modules of the column are prestressed with forces that assure the tensegrity form 

(derived from previous FE simulations). These modules are connected at bases. At time period 0÷9 
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seconds the internal forces decrease with elongation of the active cables. At time period 9÷30 seconds 

the structure lays relaxed on the ground, only the struts move on each other to find a stable static 

configuration. The assembly starts in the 30th second of the simulation. At time period 32÷37 seconds 

due to the contact forces between the struts, the forces oscillate and even change their sing to positive 

values. This happens because the fragments of the relaxed cables might be compressed in some 

transient configurations due to the inertia forces acting on the springs at which the forces are measured 

(see Figure 6). After 37th second the contact disappears and so do the oscillations. At time period 

37÷54 seconds the forces are very small (but not zero) compared to prestress values what results from 

low mass of the entire structure. After 54th second the structure becomes stiffer with increasing 

prestress until it becomes its final tensegrity geometry. At the end of the simulation of the phase 2 

values of the forces are equal to the values at the beginning of the simulation of the phase 3 (Figure 

9b).

The trend of force transition at the beginning and at the end of the simulation results directly 

from the input function. At the beginning the movement accelerates, then it continues at constant 

speed to decelerate to zero at the end [24].

a)

b)

Fig. 9. Internal forces in all the cables during the deployment of the B-pattern column: a) phase 2; b) phase 3

It can be noticed in Figure 9b that individual initial forces differ from the values at the end of 

the simulation, what is caused mainly by the change of the gravity force vector direction relatively to 

the structure. The beginning of this simulation is the end of the phase 2 simulation described above. 
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The forces in all cables are given in Figure 9b and they differ within both groups – triangle cables 

and diagonal cables. The deviation can be explained on an example of one module. When the structure 

is set horizontally, the top cables transfer more force than the bottom ones due to the force distribution 

caused by the masses of elements (see Figure 8 first line). During the simulation time 0÷50 seconds

these differences in forces decrease with obtaining a fully erected position. At the end of the 

simulation all the forces converge to the values characteristic to simplex modules.

Throughout the simulations, for aforementioned mass properties, the influence of the 

deployment time on internal forces was negligible in the case of the B-pattern column and hence only 

one run is described – 60 seconds for the 2nd phase and 50 seconds for the 3rd phase.

This deployment pattern is possible only when the second step is performed in such a way 

that all side cables’ lengths are changed. If only one or two side cables are manipulated, the third one 

limits the struts movement. This effect could be eliminated by changing the lengths of base cables 

but it leads to an even more complicated physical realization, what was the reason for abandoning 

this approach. In the horizontal initial configuration, changing only the lengths of the base cables 

would lead to a similar effect but the physical realization would be more complicated, because then 

15 instead of 12 cable actuators would have to be installed.

5. CONCLUSIONS

The present paper is an approach to the analysis of deployable tensegrity structures by combining the 

finite element (FE) modeling and multibody dynamics (MBD) simulations. The proposed approach 

is applied for a temporary deployable column based on the 3-strut simplex modules. The finite 

element model of the column is used for the final form-finding of the system, it also provides 

information on structural behavior in the deployed state. The dynamical modeling is used to analyze 

various deployment scenarios, choose active cables for the deployment and for the self-stress 

application, and to control distributions of internal forces during the assembly process. The proposed 

combination of MBD and FE analysis creates synergy that results in precise and reliable simulations 

of complex structural systems, such as the considered deployable tensegrity structures. 

With the use of the described technique it is possible to investigate various possibilities of 

changing the geometry and physical properties of tensegrity structures. The performed simulations 

reflect the behavior of these structures both qualitatively and quantitatively.
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Two deployment schemes were analyzed using the proposed method. The analyses of the B-

pattern tensegrity column – the one that assumes preliminary assembly of individual modules in 

a horizontal position and then a module-after-module deployment – gave promising results from the 

point of view of future physical realization. The system can be built using the commonly available 

materials and actuators and that will be the next step for the authors.

Moreover, the performed simulations – the ones shown in this paper as well as other carried 

out by the authors – proved that the proposed technique is time- and cost-efficient. It has the potential 

to be used in the analysis of complex tensegrity systems both during the deployment phase and in the 

deployed state, with no need to carry out expensive and time consuming laboratory tests. It should be 

considered as a method aimed at preliminary investigations of the designed structures, which can 

indicate structural configurations, deployment schemes, active cables, etc., that should be afterwards 

tested in laboratory. This qualifies the proposed technique as a good tool for the analysis of deployable 

tensegrity structures.

Acknowledgements: Calculations using MSC ADAMS software were carried out at the Academic 

Computer Centre in Gdańsk. 
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SYMULACJA ROZWIJALNEGO SŁUPA TENSEGRITY 
W OPARCIU O METODĘ ELEMENTÓW SKOŃCZONYCH I DYNAMIKĘ UKŁADÓW WIELOCZŁONOWYCH

Słowa kluczowe: struktury rozwijalne, tensegrity, metoda elementów skończonych, dynamika układów wieloczłonowcyh

PODSUMOWANIE:

W pracy został poruszony problem analizy rozwijalnych słupów tensegrity. Głównym celem opracowania jest

zaprezentowanie techniki pozwalającej na zapewnienie niezawodnych symulacji tego typu struktur. Zaproponowana 

technika wykorzystuje metodę elementów skończonych (MES) oraz symulacje dynamiki układów wieloczłonowych

(MBD). Metoda elementów skończonych dostarcza informacji odnośnie zachowania konstrukcji w stanie rozwiniętym, 

podczas gdy analiza dynamiki układu wieloczłonowego daje informacje dotyczące zachowania układu podczas realizacji 

różnych scenariuszy rozwijania, wyboru aktywnych cięgien, wartości samonaprężenia oraz rozkładu sił w elementach 

podczas rozwijania. Połączenie MES i MBD daje możliwość dokładnych i niezawodnych symulacji skomplikowanych 

struktur do jakich należą rozwijalne konstrukcje tensegrity.

Opisana metoda zaprezentowana jest na przykładzie rozwijalnego słupa tensegrity, który bazuje na popularnym module 

tensegrity – simplex trójzastrzałowym. Analiza słupa przy wykorzystaniu proponowanej techniki dowodzi jej 

przydatności do wykonywania złożonych symulacji dynamicznych struktur rozwijalnych.

Analizowany słup składa się z czterech modułów simplex połączonych w węzłach poprzez wspólne cięgna podstaw. 

Wykorzystano moduły prawo- i lewoskrętne ustawione naprzemiennie. W pracy rozpatrywano trzy konfiguracje słupa: 

standardowy (4.00 m), wysoki (4.15 m) i niski (3.75 m). Są to w rzeczywistości trzy warianty tego samego słupa, 

ponieważ górny moduł może być rozwinięty do różnej wysokości, zależnie od rozpatrywanego zastosowania. Wszystkie 

moduły simplex mają taką samą długość zastrzałów, a dostosowanie wysokości odbywa się poprzez zmianę długości 

cięgien.

Stosując opisaną technikę, można analizować rozmaite zmiany geometrii i zmiany właściwości fizycznych struktur 

tensegrity. Przeprowadzone symulacje pozwalają na zbadanie pracy konstrukcji zarówno pod względem jakościowym 

jak i ilościowym. W pracy przeanalizowano dwa schematy rozwijania słupa w celu określenia liczby i wyboru aktywnych 

cięgien: schemat A (rozwijanie pionowe) i schemat B (rozwijanie poziome). Analiza schematu B – konfiguracji, która 

zakłada wstępny montaż indywidualnych modułów w pozycji poziomej, a następnie rozwijanie moduł po module – dała 

obiecujące wyniki z punktu widzenia fizycznej realizacji. Struktura taka mogłaby zostać zbudowana z powszechnie 

dostępnych materiałów, z wykorzystaniem standardowych siłowników. 

Przeprowadzone symulacji dowiodły, że proponowana technika jest wydajna pod względem czasu i kosztów obliczeń. 

Ma duży potencjał do stosowania w analizie skomplikowanych systemów tensegrity zarówno podczas fazy rozwijania 

jak i w stanie rozwiniętym, bez konieczności wykonywania kosztownych i długotrwałych badań laboratoryjnych.
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